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Abstract: Structural integrity procedures were used to demonstrate the fitness for the purpose of engineering components 
transmitting loads. The prediction of the fracture strength of titanium alloys containing sharp notches through the damage model 
depends on the un-notched strength and the critical length of the damage zone ahead of the notch. In general, the critical length of the 
damage zone depends on the material, specimen, and size of the sharp notch. Modifications were made in one of the stress fracture 
criteria known as the average stress criterion for accurate prediction of notched tensile strength of titanium alloy specimen containing 
sharp notches. To examine the adequacy of these modifications, fracture data of center-cracked titanium alloys with various 
thicknesses are considered. The notched (fracture) strength estimates are found to be close to the test results. The modified average 
stress criterion is very simple to predict the notched tensile strength. 
Key words: titanium alloys; center crack tensile specimen; stress criterion; failure assessment diagram; fracture strength 
                                                                                                             
 
 
1 Introduction 
 

Aerospace industry recognizes two types of failure 
criteria: yielding and fracture. Failure due to yielding is 
applied to a criterion in which some functional of the 
stress or strain is exceeded and fracture is applied to a 
criterion in which an already existing crack extends 
according to an energy balance hypothesis. Experiment 
with a variety of materials would show that a theory 
works well for certain materials but not for others. The 
safety assessment of structures without a fracture 
mechanics analysis is insufficient and may cause an 
unexpected reduction in the load carrying capacity of an 
actual structure due to the presence of unavoidable 
crack-like defects not being taken into consideration. The 
extraordinary success of fracture mechanics lies in its 
ability to combine a theoretical framework with 
experimentally measured critical quantity. 

Several fracture analysis methods to predict the 
fracture behavior of flawed structural components used 
in an experimental and predictive round robin conducted 
in 1979−1980 by the American Society for Testing and 
Materials (ASTM) Task Group E 24.06.02 were 

described in Ref. [1]. None of these methods were found 
to be the best for all the structural materials examined. 
GORDON [2] has reviewed several of the major pipeline 
codes, which have incorporated fracture-mechanics- 
based fitness-for-service concepts. A number of 
engineering methods have been proposed to examine the 
fracture behavior of cracked configurations [3−5]. In the 
failure assessment diagram or the R6 method [6], the 
integrity of the structure is assessed and represented in a 
two-dimensional way: a function of the failure strength 
pursuant to linear elastic fracture mechanics (LEFM) is 
plotted as ordinate and that pursuant to plastic collapse as 
abscissa. 

DUGDALE [7] established the stress limits for any 
transitional stages between linear elastic failure and 
plastic collapse. Experiments largely proved these limits 
to be conservative. The two-parameter fracture criterion 
of NEWMAN [1,8] applies relations derived within the 
scope of LEFM. In this criterion, the two fracture 
parameters take account of the deviation of the 
stress-to-failure from the stress calculated pursuant to 
LEFM principles. These parameters have to be 
determined earlier in pretests, so-called base-line tests, 
conducted under identical conditions of the material.  
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KELLER et al [9] have carried out fracture analysis of 
surface cracks in cylindrical vessels applying the 
two-parameter fracture criterion. It was neither possible 
to determine satisfactorily the failure stresses of vessels 
by means of fracture parameters obtained from fracture 
mechanics specimens, nor to predict the loads to failure 
of the specimens by means of the vessels’ fracture 
parameters. ZERBST et al [10] have applied the recently 
developed European flaw assessment procedure SINTAP 
(Structural Integrity Assessment Procedures for 
European Industry) to the published fracture data [11] on 
steel pipes having through-wall and surface cracks 
subjected to internal pressure. The SINTAP procedure 
offers a crack driving force (CDF) and a failure 
assessment diagram (FAD) route. Both are 
complementary and give identical results. In the CDF 
route the determination of the crack tip loading in the 
component and its comparison with the fracture 
resistance of the material are two separate steps. In the 
FAD route, a failure line is constructed by normalizing 
the crack tip loading with the material fracture resistance. 
The assessment of the component is then based on the 
relative location of an assessment point with respect to 
this failure line. 

For cracked configurations, a relation between the 
stress intensity factor (Kmax) and the corresponding stress 
(σf) at failure is suggested as [12] 
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where σf is the failure stress normal to the direction of 
the crack in a body and σu is the nominal stress required 
to produce a plastic hinge on the net section. For the 
pressurized cylinders, σf is the hoop stress at the failure 
pressure of the flawed cylinder, and σu is the hoop stress 
at the failure pressure of an unflawed cylinder. For the 
determination of three fracture parameters (KF, m and p), 
test results of simple laboratory specimens like compact 
tension specimens, center crack specimens etc. can be 
utilized. For fracture strength evaluation of any other 
structural configuration, the stress intensity factor 
corresponding to the geometry is to be used in equation 
(1) to develop the necessary fracture strength equation. If 
the values of applied stress and corresponding stress 
intensity factor for the specified crack size in the 
structure lie below the Kmax—σf curve of the failure 
assessment diagram, the structure for that loading 
condition is safe. 

Owing to the inherent complexity and the number 
of factors involved in predicting the notched strength of 
structural components, several semi-empirical failure 
criteria have been proposed and have gained popularity 
because of their simplicity of application [13]. Fracture 
behaviour of centre notched tensile specimens can be 

examined using a modification in the point stress 
criterion (PSC) [14], as well as in the average stress 
criterion (ASC) [15] and in the inherent flaw model (IFM) 
[16,17]. 

The titanium alloys are established for aerospace 
materials worldwide. Fracture data have been complied 
for selected titanium alloys (viz, Ti−6Al−4V alloy, 
Ti−8Al−1Mo−1V alloy, Ti−5Al−2.5Sn alloy) usefully 
for aircraft applications [18]. KAMALA et al [19] had 
used a modified average stress criterion to predict the 
fracture strength of various lay-ups of carbon/epoxy 
laminates. The objective of this work is to utilize an 
improved average stress criterion for tensile fracture 
strength evaluation of titanium alloys. 
 
2 Modified average stress criterion 
 

A knowledge of the state of stress is essential in the 
case of a body with a crack in order to judge the nature 
of its propagation and thereby its strength. PARIS and 
SIH [20] as well as PARTON and MOROZOV [21] have 
described the Westergaard method of stress analysis for 
cracks by applying the principles of linear, small 
deformation elasticity. They presented local field 
equations for stress and displacement components ahead 
of a straight crack for all three local modes (Mode I: 
opening mode; Mode II: sliding mode; Mode III: tearing 
mode) of deformation. These three modes essentially 
describe three independent kinematical movements of 
the upper and lower crack surfaces and are sufficient to 
describe all the possible modes of crack propagation in 
an elastic material. In practice, of these three modes, the 
most applicable is the opening mode, which is 
considered in the present study. 

The normal stress, σy(x, 0) along the x-axis ahead of 
a crack is given by [22] 
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where σ is the applied stress and c is the half crack 
length. 

The average stress criteria of WHITNEY and 
NUISMER [23] postulated that the final fracture of a 
cracked body occurs when the average stress over a 
small distance aca ahead of crack tip equals the ultimate 
tensile strength (σ0) of the material [23], i.e.,  
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where aca is the crack tip damage size of failure (see  
Fig. 1). 

Substituting ∞= NCσσ  and caacx += in equation 
(2) and using Eq. (3), one can obtain a relationship 
between the fracture strength and the crack length as  
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Fig. 1 Characteristic length (aca) in wide tensile specimen 
containing central crack 

 
1

caca
0NC 11

−
∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
ac

c
ac

cσσ             (4) 

 
where ∞

NCσ  is the fracture strength of a wide specimen. 
The unknown characteristic length (aca) is obtained 

by the test data of a finite width tensile cracked specimen. 
The fracture strength (σNC) of the center crack wide 
tensile specimen is obtained from that of a finite width 
specimen (σNC) as 
 

∞
NCσ = NCσ Y                                 (5) 

 
where the finite width correction factor (Y) [24] is 
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where c is half the crack length and W is the specimen 
width. 

Finite width center–crack tensile specimen 
subjected to fracture stress (σNC) is shown in Fig. 2. 
 

 
Fig. 2 Finite width center–crack tensile specimen subjected to 
fracture stress (t is the specimen thickness) 

Using σNC, σ0 and c, the unknown characteristic 
length aca is found from equation (4) as 
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After determining the characteristic length, the 

fracture strength ( ∞
NCσ ) can be obtained directly from 

equation (4) specifying the crack length (2c). Fracture 
strength of the finite width plate can be obtained from 
equation (5) or dividing ( ∞

NCσ ) with the correction factor 
(Y).  It is noted from the fracture data on different 
materials that the fracture strength decreases with 
increase in the crack size. Equation (7) indicates that the 
characteristic length (aca) is not a material constant. It 
increases with increase in the crack size. This calls for a 
modification in the average stress criterion. 

From the above results one can write a relation 
between (aca) and ( ∞

NCσ ) in the non-dimensional form as 
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To determine the parameters, KASC and δaca in 

equation (8), two cracked specimen tests in addition to 
an unflawed specimen test are required. Normally more 
tests are performed to take into account scatter in the test 
results. The parameters KASC and δaca are determined by a 
least square curve fit to the data for aca and 0acaNC /σδσ ∞ = 
0 in equation (8) represents the constant damage size. 
When δaca>1 and 0NC σσ =∞ , equation (8) results in 

0/π ASCca0 <Kaσ . Hence, 10 aca ≤≤ δ .Whenever δaca 
is found to be greater than unity, the parameter δaca has to 
be truncated to 1 by suitably modifying the parameter 
KASC with the fracture data.  If δaca is found to be less 
than zero, the parameter δaca has to be truncated to zero 
and the average of ca0 πaσ values from the fracture 
data yields the parameter KASC. Once KASC and δaca in 
equation (8) are known, it is possible to eliminate the 
characteristic length (aca) from equation (8) using 
equation (7). 

The resulting nonlinear equation for the fracture 
strength ( ∞

NCσ ) is 
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This non-linear fracture strength equation (9) is 

solved using the Newton–Raphson iterative scheme to 
obtain ∞

NCσ  for the specified crack size.  The fracture 
strength ( NCσ ) of the finite width plate is obtained by 
dividing ∞

NCσ  with the correction factor (Y). 
A relation between )π( NCQ cK ∞≡ σ  and 
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0NC /σσ ∞  can be written by eliminating the characteristic 
length using equation (8) and the fracture strength 
equation (4) as 
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Equation (10) represents a failure assessment 

diagram useful for fracture strength evaluation of 
different cracked configurations. This expression 
indicates that the fracture strength decreases with 
increasing crack size [15].  It is also possible to 
generate fracture strength ( ∞

NCσ ) versus crack size (2c) 
curves from equation (9) by specifying 0 < ∞

NCσ < 0σ . 
From these curves one can find ∞

NCσ  for the specific 
crack size. The fracture strength ( NCσ ) corresponding to 
the crack size is evaluated by dividing ∞

NCσ  with Y. 
Figure 3 shows a typical failure assessment diagram. 

For the specified flaw size and stress level σa the 
corresponding stress intensity factor Ka and ∞

NAσ  can be 
found for the cracked configuration. If the point A lies 
inside the envelope of the failure assessment diagram 

(Fig. 3), the cracked configuration is safe under that 

stress level. The point B in Fig. 3 refers to the failure 

point. From this point, the failure strength of the cracked 
configuration for the specified flaw size can be 
estimated. 
 

 
Fig. 3 Typical failure assessment diagram 
 
3 Results and discussion 
 

To verify the validity of the modified average stress 
criterion, fracture data [18] of the center crack tensile 
specimens made of titanium alloys are considered. 
Fracture data on high strength alloys useful for aircraft 
applications in Ref. [18] are categorized by material, 
alloy, temper and/or heat treatment, bare or clad, 
thickness and specimen orientation with respect to the 
rolling direction. For the case of multiple test results, 

average strength value is considered. 
From the fracture strength (σNC) data of the finite 

width center-crack tension specimens, the fracture 
strength ( ∞

NCσ ) for wide tensile specimens is obtained 
from equation (5) utilizing the finite width correction 
factor (Y) in equation (6). Substituting the crack length 
(2c), the un-notched strength (σ0) and the notched 
strength ( ∞

NCσ ) in equation (7), the characteristic length 
(aca) is obtained. It is noted that the characteristic length 
increases with increasing the crack size. Hence, values of 
aca, ∞

NCσ  and σ0 from fracture data of the material are 
fitted in equation (8) and obtained the fracture 
parameters KASC and δaca. When δaca=0, the characteristic 
length becomes constant. For this case, the fracture 
strength ( ∞

NCσ ) for the crack size (2c) can be obtained 
directly from equation (4). The fracture strength ( NCσ ) 
for the finite width plate can be obtained by dividing 

∞
NCσ  with the finite width correction factor (Y). When 

δaca>0, one can generate fracture strength ( ∞
NCσ ) versus 

the crack size (2c) curves from equation (9) by 
specifying the values of ∞

NCσ  from 0 to 0σ . From this 
curve, one can find easily the fracture strength ( ∞

NCσ ) for 
the crack size. Then applying the finite width correction 
factor (Y) to ∞

NCσ , the fracture strength ( NCσ ) for the 
finite width plate can be estimated. In the present study, 
the non-linear fracture strength equation (9) is solved 
using the Newton-Raphson iterative method. 

A standard error (Es) between analytical and test 
results is obtained.  
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where N is the number of test specimens; 1

NCσ  is the 
analysis result; 2

NCσ  is the test result. 
The relative error (η) is computed as  
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Fracture analysis has been carried out considering 

the ultimate tensile strength values and the fracture data 
of titanium alloys generated at 295 K from center–crack 
tensile specimens having different thicknesses. The 
variation in the un-notched strength (σ0) values for the 
same material having same sample dimension is mainly 
due to the orientation of the specimen relative to the 
direction of stressing. 

Table 1 gives the fracture toughness parameters 
(KASC and δaca) evaluated from the test results [18] of 
centre surface crack tension specimens made of titanium 
alloys. Tables 2 to 11 give the comparison of fracture 
strength estimated with the test results. The standard 
error is found to be less than 0.1, which indicates that the 
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fracture strength estimated utilizing the fracture 
parameters (KASC and δaca) can be expected within ±10% 
of the test results. Figures 4−6 show the failure 
assessment diagrams including the fracture data of the 
materials. It can be seen from Fig. 7 that most of the 
fracture strengths estimated are within ±10% of the test 
results. 
 
Table 1 Fracture toughness parameters (KASC and δaca) 
evaluated from test results [18] of center crack tensile 
specimens made of titanium alloys 

Alloy σ0/MPa t/mm Number of 
specimen 

KASC/ 
(MPa·m1/2) δaca

995.70 1.02 6 174.4 0.035

988.00 1.27 3 176.8 0.372

955.00 5.08 3 392.6 0.634
Ti−6Al−4V 

944.60 6.35 5 235.7 0.440

1000.00 0.51 3 99.0 0.000

1048.00 1.27 9 135.7 0.367Ti−8Al−1Mo−1V 

1028.70 6.35 5 145.5 0.074

1555.50 0.51 14 98.3 0.175

1703.00 1.60 6 62.3 0.197Ti−5Al−2.5Sn 

1537.60 2.54 7 76.6 0.000

All experiments were done at 295 K. 
 
Table 2 Comparison of analytical and test results of center 
crack tensile specimen made of Ti−6Al−4V alloy (t=1.02 mm, 
KASC=174.4 MPa·m1/2, δaca=0.035) 

σNC/MPa 
W/mm 2c/mm σ0/MPa 

Test [18] Analysis 

Relative
error/%

203.20 12.19 995.7 868.77 836.86 3.67 

203.20 24.13 995.7 746.73 707.15 5.30 

203.20 51.31 995.7 541.95 513.20 5.30 

203.20 76.96 995.7 421.97 408.22 3.26 

203.20 102.87 995.7 327.51 329.64 −0.65 

203.20 127.76 995.7 249.60 265.07 −6.20 

Standard error(SE)=0.045 
 
Table 3 Comparison of analytical and test results of center 
crack tensile specimen made of Ti−6Al−4V alloy (t=1.27 mm, 
KASC=176.8 MPa·m1/2, δaca=0.372) 

σNC/MPa 
W/mm 2c/mm σ0/MPa 

Test [18] Analysis 

Relative
error/%

611.12 76.20 988.00 543.33 539.88 0.63 

610.62 152.40 988.00 352.89 375.77 −6.48 

611.38 254.00 988.00 286.83 271.51 5.34 

Standard error(SE)=0.049 

Table 4 Comparison of analytical and test results of center 
crack tensile specimen made of Ti−6Al−4V alloy (t=5.08 mm, 
KASC=392.6 MPa·m1/2, δaca=0.634) 

σNC/MPa 
W/mm 2c/mm σ0/MPa

Test [18] Analysis
Relative
error/%

611.38 76.45 955.00 641.92 654.60 −1.98 

611.38 152.40 955.00 524.02 506.47 3.35 

611.38 254.00 955.00 381.29 386.82 −1.45 

Standard error(SE)=0.024 

 
Table 5 Comparison of analytical and test results of center 
crack tensile specimen made of Ti−6Al−4V alloy (t=6.35 mm, 
KASC=235.7 MPa·m1/2, δaca= 0.440) 

σNC/MPa 
W/mm 2c/mm σ0/MPa

Test [18] Analysis
Relative
error/%

244.60 48.77 944.60 589.76 613.05 −4.48 

409.45 101.35 944.60 465.41 467.78 −0.51 

409.45 203.71 944.60 310.96 304.09 2.21 

816.81 204.22 944.60 394.05 357.80 9.20 

816.81 487.68 944.60 180.65 193.94 −7.36 

Standard error(SE)=0.057 

 
Table 6 Comparison of analytical and test results of center 
crack tensile specimen made of Ti−8Al−1Mo−1V alloy (t=0.51 
mm, KASC=99.0 MPa·m1/2, δaca=0) 

σNC/MPa 
W/mm 2c/mm σ0/MPa

Test [18] Analysis
Relative
error/%

304.80 14.73 1000.00 759.83 712.73 6.20 

304.80 24.13 1000.00 586.07 569.64 2.80 

304.80 52.58 1000.00 357.85 381.30 −6.55 

Standard error(SE)=0.055 

 
Table 7 Comparison of analytical and test results of center 
crack tensile specimen made of Ti−8Al−1Mo−1V alloy (t=1.27 
mm, KASC=135.7 MPa·m1/2, δaca=0.367) 

σNC/MPa 
W/mm 2c/mm σ0/MPa

Test [18] Analysis
Relative
error/%

203.20 25.91 1048.00 723.97 725.73 −0.24 

203.20 38.10 1048.00 603.31 621.71 −3.05 

203.20 50.55 1048.00 546.08 544.80 0.24 

508.00 51.82 1048.00 562.98 570.85 −1.40 

508.00 95.50 1048.00 481.27 434.56 9.71 

508.00 108.20 1048.00 406.12 408.90 −0.69 

508.00 153.42 1048.00 328.20 339.71 −3.51 

508.00 203.71 1048.00 294.42 284.49 3.37 

508.00 252.98 1048.00 230.64 241.07 −4.52 

Standard error (SE) =0.041 
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Table 8 Comparison of analytical and test results of center 
crack tensile specimen made of Ti−8Al−1Mo−1V alloy (t=6.35 
mm, KASC=145.5 MPa·m1/2, δaca=0.074) 

σNC/MPa 
W/mm 2c/mm σ0/MPa 

Test [18] Analysis 
Relative
error/%

203.20 25.40 1028.70 723.97 728.33 −0.60 

203.20 38.61 1028.70 632.96 610.74 3.51 

203.20 51.31 1028.70 552.29 527.05 4.57 

203.20 74.68 1028.70 427.49 419.74 1.81 

203.20 124.71 1028.70 260.63 269.53 −3.42 

Standard error (SE) =0.031 

 
Table 9 Comparison of analytical and test results of center 
crack tensile specimen made of Ti−5Al−2.5Sn alloy (t=0.51 
mm, KASC=98.3 MPa·m1/2, δaca=0.175) 

σNC/MPa 
W/mm 2c/mm σ0/MPa 

Test [18] Analysis 

Relative
error/%

76.20 3.81 1555.50 1192.83 1179.72 1.10 

76.20 7.87 1555.50 911.52 881.76 3.26 

76.20 13.21 1555.50 738.45 687.56 6.89 

76.20 25.91 1555.50 481.13 472.82 1.73 

152.40 3.30 1555.50 1287.64 1239.40 3.75 

152.40 12.45 1555.50 748.11 721.04 3.62 

152.40 25.65 1555.50 503.82 506.91 −0.61 

152.40 50.80 1555.50 339.92 345.97 −1.78 

304.80 3.05 1555.50 1247.99 1269.28 −1.71 

304.80 6.10 1555.50 1054.73 999.57 5.23 

304.80 12.45 1555.50 727.42 725.20 0.31 

304.80 25.15 1555.50 501.47 520.67 −3.83 

304.80 101.60 1555.50 25.36 248.49 1.53 

304.80 126.49 1555.50 213.74 224.97 −5.25 

Standard error (SE) =0.035 

 
Table 10 Comparison of analytical and test results of center 
crack tensile specimen made of Ti−5Al−2.5Sn alloy (t=1.60 
mm, KASC=62.3 MPa·m1/2, δaca=0.197) 

σNC/MPa 
W/mm 2c/mm σ0/MPa 

Test [18] Analysis 
Relative
error/%

25.40 3.17 1703.00 850.15 880.41 −3.56 

25.40 11.30 1703.00 408.53 429.85 −5.22 

50.80 3.38 1703.00 885.32 867.47 2.02 

50.80 10.67 1703.00 539.88 496.01 8.13 

50.80 20.07 1703.00 322.69 339.62 −5.25 

76.20 25.40 1703.00 322.00 313.99 2. 49 

Standard error (SE) =0.049 

Table 11 Comparison of analytical and test results of center 
crack tensile specimen made of Ti−5Al−2.5Sn alloy (t=2.54 
mm, KASC=76.6 MPa·m1/2, δaca=0) 

σNC/MPa 
W/mm 2c/mm σ0/MPa

Test [18] Analysis

Relative
error/%

25.40 3.05 1537.60 1112.16 1073.61 3.47 

25.40 6.10 1537.60 806.03 811.92 −0.73 

25.40 9.14 1537.60 622.62 637.27 −2.35 

50.80 3.30 1537.60 1091.48 1068.09 2.14 

50.80 6.86 1537.60 820.50 791.92 3.48 

50.80 9.65 1537.60 670.88 663.63 1.08 

76.20 25.40 1537.60 391.29 393.59 −0.59 

Standard error (SE) =0.023 

 

 
 
Fig. 4 Failure assessment diagrams of Ti−6Al−4V     
titanium alloys with different thicknesses compared with test 
data [18] 
 

 
 
Fig. 5 Failure assessment diagrams of Ti−8Al−1Mo−1V 
titanium alloys with different thicknesses compared with test 
data [18] 



H. BRIGHTON ISAAC JOHN, et al/Trans. Nonferrous Met. Soc. China 23(2013) 1072−1079 

 

1078 

 

 
Fig. 6 Failure assessment diagrams of Ti−5Al−2.5Sn titanium 
alloys with different thicknesses compared with test data [18] 
 

 

Fig. 7 Comparison of tensile fracture strength of titanium 
alloys 
 
4 Conclusions 

 
A simple and realistic relation for the characteristic 

length in the average stress criterion is established for 
accurate evaluation of fracture strength of cracked  
bodies. The procedure is validated considering the 
fracture data of titanium alloys generated from center 
crack tensile specimens. Failure assessment diagrams 
were generated from the determined fracture parameters 
and showed the fracture data close to the failure 
boundary. Fracture strength of any other cracked 
configurations can be evaluated utilizing the present 
theory with the correction factor for the stress intensity 
factor of the cracked body and the unflawed strength of 
the configuration. 
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改进的平均应力准则对钛合金断裂强度的评估 
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摘  要：结构完整性方法通常用来论证工程零件载荷传递的合理性。损伤模型对含尖缺口的钛合金断裂强度的预

测取决于材料的无缺口强度以及缺口损伤区前的临界长度。损伤区的临界长度通常取决于材料、试样以及尖缺口

的尺寸。平均应力准则作为一种应力断裂准则，常用来对含尖缺口的钛合金抗拉强度进行精确预测。基于不同厚

度的中心裂缝钛合金的断裂数据，对平均应力准则进行改进。缺口(断裂)强度的预估值与测试结果接近，表明改

进的平均应力准则可以简便地预测缺口的抗拉强度。 

关键词：钛合金；中心裂纹拉伸试样；应力准则，失效评估图；断裂强度 
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