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Effect of initial microstructure on hot workability of 7085 aluminum alloy
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Abstract: The hot workability of 7085 aluminum alloys with different initial microstructures (as-homogenized and as-solution
treated) was studied by isothermal compression tests at the deformation temperature ranging from 300 to 450 °C and the strain rate
ranging from 0.0001 to 1 s™'. The strain rate sensitivity of the alloy was evaluated and used for establishing the power dissipation
maps and instability maps on the basis of the flow stress data. The results show that the efficiency of power dissipation for the
as-homogenized alloy is lower than that of the as-solution treated alloy. The deformation parameters of the dynamic recrystallization
for the as-homogenized and as-solution treated alloy occur at 400 °C, 0.01 s~ and 450 °C, 0.001 s™', respectively. The flow instability
region of the as-homogenized alloy is narrower than that of the as-solution treated alloy. These differences of the alloys with two

different initial microstructures on the processing maps are mainly related to the dynamic precipitation characteristics.
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1 Introduction

Al-Zn—Mg—Cu alloys have been widely used as
structural materials in aerospace due to their low density,
excellent stress corrosion resistance and fracture
toughness [1,2]. The hot deformation behavior and
workability of Al-Zn—Mg—Cu alloys were the crucial
parameters to characterize plastic deformation properties.
A number of studies have been put forward to understand
the hot deformation behavior, which mainly focused on
the flow stress curves, constitutive equations and the
deformation mechanism. JIN et al [3] investigated the
hot deformation behavior of 7150 aluminum alloy and
found that the peak flow stress decreased with increasing
the deformation temperature and decreasing the strain
rate. ZHEN et al [4] demonstrated that the average grain
boundary misorientation angle of 7050 aluminum alloy
after high temperature compression increased with the
increase of deformation temperature. HU et al [5]
reported that the main deformation mechanism of 7050
aluminum alloy was grain boundary slip at large Z
parameter value while grain boundaries sliding at small Z
parameter value. The processing map has been developed
and used for optimizing and evaluating the thermal

deformation mechanisms of metal materials, such as
magnesium alloy [6,7], aluminum alloy [8—10] and
titanium alloy [11,12].

The processing map on the basis of the dynamic
material model (DMM) was developed by PRASAD et al
[13]. According to the model, the work-piece undergoing
hot deformation is considered to be a dissipater of power
and the total power dissipation (P) might be dissipated
into two parts: G and J.

P=aé=G+J=j(fadé+j§sda 1)

where G represents the power dissipated by plastic work,
J is related to the power dissipation by metallurgical
process, such as dynamic recovery, dynamic
recrystallization, dissolution or growth of particles, and
phase transformation [12,14—16].

The relationship between G and J is related to strain
rate sensitive parameter (m), which is given as follows:

dJ odé _d(no) _
dG é&do  d(lné)

()

For an ideal linear dissipating body, m=1 and
J=Jmnax=P/2. The power dissipation capacity of the alloy
can be evaluated by the efficiency of power dissipation
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(1), which is defined as follows [13]:

J 2m
- = 3
g J m+1 )

max

A continuum instability criterion based on the
extreme principles of irreversible thermodynamics is
used to identify the regions of flow instabilities.
According to the criterion, the flow instability can be
expressed as follows:

g(é)zaln[m/(r;?+l)]+m<0 )
Olné

The variation of the instability parameter (&)
with temperature and strain rate can be expressed by the
instability maps to delineate instability regions of
negative £(¢) value.

Moreover, previous investigations showed that the
processing maps were significantly influenced by the
initial microstructures. ANBU and RAMANATHAN
[17] reported that the extruded ZE41A magnesium alloy
showed higher efficiency of power dissipation and lower
instability regions than the as-cast alloy. VENUGOPAL
et al [14] found that the peak efficiency of power
dissipation of dynamic recrystallization (DRX) was
higher in the as-cast material than that in the wrought
AISI 304 stainless steel. RAVICHANDRAN and
PRASAD [18] revealed that the peak efficiency of power
dissipation domain rotated slightly toward lower strain
rates and lower temperature with increasing aluminum
purity. LEE et al [11] assessed the hot workability of the
as-cast and forged Ti—8Ta—3Nb alloys using processing
maps. They concluded that the efficiency of power
dissipation of the forged specimens was higher than that
of the as-cast specimen. Therefore, it is necessary to
understand the initial microstructure on the workability
and improve the hot processing of aluminum alloys.

7085 aluminum alloy was developed as the new
generation of high strength and thick plate alloy, which
has higher fracture toughness and lower quench
sensitivity than 7050 aluminum alloy. Although some
works have been done for 7085 aluminum alloy [19-21],
few studies are related to the hot workability of the alloy
with processing map, especially different initial
microstructures. In this work, the effect of the initial
microstructure (as-homogenized and as-solution treated)
on workability of 7085 aluminum alloy was studied
through  processing maps and  microstructure
observations.

2 Experimental
The experiments were carried out on 7085

aluminum alloy with main chemical compositions of
7.5% Zn, 1.6% Mg, 1.5% Cu, 0.12% Zr and Al balance

(mass fraction, %). The specimens were subjected to
homogenization and solution heat treatment. The
homogenization treatment was as follows: the as-cast
billets were homogenized at 450 °C for 24 h and 470 °C
for 30 h, and cooled to room temperature. The solution
treatment was as follows: the homogenized billets were
forged at 400—450 °C and strain of about 3, and then
solution-treated at 470 °C for 1 h, followed by water
quenching.

Cylindrical samples with 10 mm in diameter and 15
mm in height were machined from the homogenized
billets and solution treated plates. The compression tests
were carried out on a Gleeble 1500 at temperatures from
300 to 450 °C and strain rate from 0.0001 s 'to 1 s .
Before the compression, the specimens were heated to
the deformation temperature at a heating rate of 10 °C/s,
and then held for 3 min at the deformation temperature.
Subsequently, the specimens were compressed to 50%
reduction, and quenched in water immediately. In order
to reduce the frictional force between the specimens and
the press indenters, a graphite lubricant was used during
the isothermal compression tests. The microstructures of
the deformed specimens were examined by OM and
TEM (JEOL—2100F). Thin foils for TEM were prepared
by mechanical polishing to 80—100 pm and final twin-jet
electro polishing in a solution of 25% HNO;+75%
CH;OH at —25 °C.

3 Results

3.1 Initial microstructure

The initial microstructures of the two heat-treated
alloys are shown in Fig. 1. For the as-homogenized alloy,
the grain size is about 100 pm, and some undissolved
primary particles distribute along the grain boundaries.
The particles are probably undissolved S (A1,CuMg)
phase (Fig. 1(a)). However, the grain size is about 30 pm
and there are few coarse particles on the grain boundaries
for the as-solution treated alloy (Fig. 1(b)).

3.2 Flow stress

The flow stress curves of the as-homogenized and
as-solution treated alloys at deformation
temperatures and strain rates are shown in Figs. 2 and 3,
respectively. The results show that, for the alloys after
different treatments, the flow stress increases rapidly
with increasing the strain at the initial stage, and then
nearly keeps stable or decreases with strain beyond the
peak strain. The flow stress decreases with the decrease
of strain rate and the increase of deformation temperature.
It is clear that the flow stress of the as-solution treated
alloy is higher than that of the as-homogenized alloy,
especially at low deformation temperature. The detailed
description and comparison were shown in Ref. [20].

various
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Fig. 1 Initial microstructures of alloys: (a) As-homogenized; (b) As-solution treated
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Fig. 2 Flow stress curves of as-homogenized alloys at different deformation temperatures: (a) 300 °C; (b) 350 °C; (c) 400 °C; (d) 450

°C

3.3 Processing map

Figure 4 shows the g 0—lg¢ curves of the alloys
at the strain of 0.5 and different temperatures under
different initial microstructures. The strain rate
sensitivity (m) was evaluated by the three order poly-
nomial fitting of the g o—lg & curves. The efficiency of
power dissipation (77) was calculated according to Eq. (3),
and the flow instability was calculated based on Eq. (4).

The processing maps for the alloy at the strain of
0.5 under different initial microstructures are shown in

Fig. 5. The contour numbers represent the efficiency of
power dissipation and the shade area corresponds to the
instable region. The processing maps reveal the
following  characteristics under different initial
microstructures.

1) The efficiency of power dissipation of the
as-solution treated alloy is higher than that of the
as-homogenized alloy.

2) For the as-homogenized alloy, one domain with a
higher value of power dissipation is obtained, which is in
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Fig. 3 Flow stress curves of as-solution treated alloys at different deformation temperatures: (a) 300 °C; (b) 350 °C; (c) 400 °C;

(d) 450 °C
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the temperature range of 380—450 °C and strain rate
range of 0.001—1 s™' with a peak efficiency of power
dissipation of 28% at about 400 °C and 0.01 5.

3) For the as-solution treated alloy, two domains
with higher value of power dissipation are obtained. One
is in the temperature range of 300—400 °C and strain rate
range of 0.0001-0.001 s' with a peak efficiency of
power dissipation of 46% at 350 °C and 0.0001 s™'. The
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temperatures under different initial microstructures:

other is in the temperature range of 420—450 °C and the
strain rate range of 0.001-0.1 s™' with a peak efficiency
of power dissipation of about 42% at 450 °C and
0.001s™".

4) The instability region is significantly affected by
the initial microstructures of the alloys. The flow
instability region of the as-solution treated alloy is wider
than that of the as-homogenized alloy.
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Fig. 5 Processing maps for alloys at strain of 0.5 under
different initial microstructures: (a) As-homogenized; (b)
As-solution treated

4 Discussion

The efficiency of power dissipation during hot
working of materials is contributed to several dynamic
metallurgical processes, such as dynamic recovery,
dynamic recrystallization, and dissolution or growth of
particles [14—16]. Therefore, in order to understand the
deformation mechanism, it is necessary to consider the
interactions of all aspects. Figure 6(a) shows the
microstructure of the as-homogenized alloy deformed at
400 °C and 0.01 s ', which corresponds to the peak
efficiency of power dissipation of 28%. It can be seen
from Fig. 6(a) that some recrystallized grains exist at the
grain  boundaries, indicating that the dynamic
recrystallization occurs. Therefore, according to the
above observation, the peak efficiency of power
dissipation for the as-homogenized alloy at 400 °C and
0.01 s' can be interpreted in terms of the dynamic
recrystallization. The efficiency of power dissipation for
the as-solution treated alloy is different from that of the

as-homogenized alloy. Two domains with higher value of

Fig. 6 Optical microstructures of alloys deformed at peak
efficiency of power dissipation domain: (a) As-homogenized
alloy deformed at 400 °C and 0.01 s '; (b) As-solution treated
alloy deformed at 450 °C and 0.001 s '; (c) As-solution treated
alloy deformed at 350 °C and 0.0001 s~

power dissipation are obtained. One domain with a peak
efficiency of power dissipation (42%) occurs at 450 °C
and 0.001 s', and the other domain with a peak
efficiency of power dissipation (46%) occurs at 350 °C
and 0.0001 s™'. Figure 6(b) shows the typical micrograph
of the as-solution treated alloy deformed at 450 °C and
0.001 s'. Tt can be seen that some recrystallized grains
exist at the grain boundaries, indicating that the dynamic
recrystallization occurs. It is also observed that the
solution-treated alloy shows the higher volume fraction
of recrystallized grains than the homogenized alloy.
However, there are no recrystallized grains at the grain
boundaries, but there are many fine precipitates for the
as-solution treated alloy deformed at 350 °C and 0.0001
! (Fig. 6(c)). Figure 7 shows the TEM microstructures
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of the as-homogenized alloy deformed at different strain
rates and 350 °C. The high density of dislocation tangles
with large size of precipitates on the matrix and along
grain boundary at the strain rate of 1 s (Fig. 7(a)). The
dislocation density slightly decreases and the distribution
of precipitates does not obviously change at the strain
rate of 0.1 s~ (Fig. 7(b)).

Fig. 7 TEM micrographs of as-homogenized alloys deformed at
350 °C and different strain rates: (a) 1 s '; (b) 0.1 s "

Figure 8 shows the typical TEM micrographs of the
as-solution treated alloy deformed at different strain rates
and 350 °C. Fine precipitates homogenously distribute
on the matrix and coarse precipitates appear along grain
boundaries at the strain rate of 1 s '. The number of the
precipitates decreases and the size of precipitates
increases at the strain rate 0.001 s '. Therefore, according
to the above analyses, the map exhibits a domain of
dynamic recrystallization occurring at 450 °C and 0.001
s while a domain of dynamic precipitation and
coarsening occurs at 350 °C and 0.0001 s for the
as-solution treated alloy.

Meanwhile, the peak efficiency of power dissipation
for the as-solution treated alloy is higher than that of
as-homogenized alloy (Fig. 5). One domain of dynamic
recrystallization for the as-homogenized and as-solution
treated alloys occurs at 400 °C, 0.01 s 'and 450 °C,
0.001 s™', respectively, and the other domain of dynamic
precipitation and particles coarsening occurs at 350 °C
and 0.0001 s for the as-solution treated alloy. These
results can be explained from the following aspects: 1)
Dynamic precipitation. The high supersaturation of solid
solution of the solution-treated alloy results in dynamic
precipitation. Fine precipitates homogenously distribute

Fig. 8 TEM micrographs of as-solution treated alloy deformed
at 350 °C and different strain rates: (a) 1 s™'; (b) 0.001 s™

on the matrix and coarse precipitates appear along grain
boundaries. With decreasing the strain rate, the number
of the precipitates decreases and the size of the
precipitates increases (Fig. 8). However, low super-
saturation of solid solution of the as-homogenized alloy
is due to slow cooling after homogenization treatment,
few fine precipitates under the deformation. 2) Residual
solute remaining in the solid solution. There is much
more residual solution remaining in the solution-treated
alloy than in the homogenized alloy. The effect will
decrease and become negligible as precipitates proceed
with increasing the strain, and the stability difference of
both conditions will be less effective due to the element
removal from matrix faster at high temperatures. 3) The
interaction between precipitate and dislocation. The fine
precipitates in the as-solution treated alloy interact with
the dislocation and inhibit dynamic recrystallization.
However, for the as-homogenized alloy, the large
constituent phases in the grain can act as the particle
stimulated nucleation (PSN) and promote the
recrystallization. 4) Grain size. The fine grain size of the
solution-treated alloy facilitates the recrystallization,
which provides a number of available sites for the
recrystallization nucleation.

Compared with the instability region of the
as-solution treated alloy and as-homogenized alloy, it is
found that the instability region of the as-solution treated
alloy is wider than that of the as-homogenized alloy
(Fig. 5). These predictions are validated by the
microstructural observations on the deformed specimens.
Figure 9 shows the microstructure of the as-homogenized
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alloy deformed at 300 °C and 1 s'. Figure 10 shows the
microstructure of the as-solution treated alloy deformed
at 350 °C and 1 s'. It can be seen that under the two
conditions, the microstructures reveal intense adiabatic
shear bands, which can be described as unstable
deformation regions corresponding to instability maps.
Generally speaking, the flow instability region of the fine
grain material can be wider than that of the coarse grains.
However, the precipitation characteristics of the alloys
cannot be neglected. Less constituent and smaller grain
size are characterized for the as-solution treated alloy
compared with the as-homogenized alloy, which benefits
to the ductility. But a large number of fine precipitates
promote work hardening and inhibit the dynamic
recovery, and the solute level increases both in the grain
and precipitation free zones (PFZ). Thus, the ability for
local grain flow to relieve stress is greatly reduced.
Consequently, the strong lattice does not accommodate
the grain boundary sliding, and enhances the
susceptibility to cracking. These phenomena were
confirmed by CERRI et al [22]. They found that the
as-solution treated 7075 aluminum alloy has lower
workability than the as-cast alloy at low deformation
temperatures.

Fig. 9 Microstructure of as-homogenized alloy deformed at
300°Cand 1s™

S0um

Fig. 10 Microstructure of as-solution treated alloy deformed at
350°Cand 15

5 Conclusions

1) The efficiency of power dissipation of the
as-solution treated alloy is higher than that of the
as-homogenized alloy.

2) The domains of dynamic recrystallization for the
as-homogenized and as-solution treated alloys occur at
400 °C, 0.01 s "and 450 °C, 0.001 s™', respectively.

3) The flow instability region of the as-solution
treated alloy is wider than that of the as-homogenized
alloy.

4) The precipitation characteristics are the main
reason for the higher efficiency of power dissipation and
the wider flow instability region of the as-solution
treated alloy.
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