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Dynamic recrystallization of AZ31 magnesium alloy simulated by
Laasraoui-Jonas dislocation equation coupled
cellular automata method
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Changsha 410082, China;
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Abstract: The hot compression tests of AZ31 magnesium alloy were performed on the Gleeble—3500 machine to obtain
the flow stress curves under temperatures of 300, 350, 400, 450 and 500 ‘C and strain rates of 0.03, 0.3 and 3 s, The
recovery parameter (#) under different strain rates were calculated by transformation of flow stress curves. A linear
correlation between Inr and 1/7 was observed. The results show that the modified Laasraoui-Jonas (L-J) dislocation
density equation can be employed to calculate the dislocation evolution during dynamic recrystallization of AZ31
magnesium alloy. The results simulated from modified L-J dislocation density model coupled with Cellular Automata
(CA) method are well matched with the experimental results.
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Fig. 1 Flow stress curves under different temperatures and
strain rates: (a) £=0.03s ' (b) £=0.3s"";(c) =35
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Table 1 Materials parameters of AZ31 magnesium alloy

Material constant Value
G 17 000 MPa
O 92 kJ/mol
Po 0.01 ym?
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Fig. 6 Simulated microstructures under different temperatures at strain rate of 0.03 s ' and true strain of 1: (a) 300 C; (b) 400 °C;
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Fig. 7 Optical microstructures under different temperatures at strain rate of 0.03 s~ and true strain of 1: (a) 300 °C; (b) 400 °C; (c)

500 C



323 55 4 W X f&, %%: Laasraoui-Jonas /v £ % 5B 45 & o il A BNNIBLRL AZ31 BE5 30 T 45 i 903

R ONAHREN 0.03 s FIELRALN 1 AN [EL ALY
LY SNRIDR e €l = 5w
Table 2 Comparison of final grain size for simulation with

experimental data at strain rate of 0.03 s ' and true strain of 1

Experiment grain ~ Simulation grain
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300 3.7 4.0
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