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Abstract: The reduction roasting processes for low-grade pyrolusite using bagasse as the reducing agent was statistically analyzed. 
The central composite rotatable design (CCD) was used to optimize this reduction roasting processes. The three process parameters 
studied were the mass ratio of bagasse to ore, the roasting temperature and the roasting time. Analysis of variance (ANOVA) was 
used to analyze the experimental results. The interactions between the process parameters were done by using the linear and 
quadratic model. The results revealed that the linear and quadratic effects as well as the interaction are statistically significant for the 
mass ratio and roasting temperature but insignificant for the roasting time. The optimal conditions of 0.9:10 of mass ratio, the 
roasting temperature of 450 °C, the roasting time of 30 min were obtained. Under these conditions, the predicted leaching recovery 
rate for manganese was 98.1%. And the satisfied experimental result of 98.2% confirmed the validity of the model. 
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1 Introduction 
 

Manganese is a strategic element that has several 
important industrial applications such as steel production, 
carbon−zinc batteries production, as well as fertilizers, 
colorants and medicines. The world rapidly growing 
demand for manganese and the gradual depletion of high 
grade manganese ore have made it increasingly 
important to develop processes for economical recovery 
of manganese from low-grade pyrolusite [1]. The 
extraction of manganese from pyrolusite must be carried 
out by reducing process because manganese dioxide is 
stable both in acid and alkaline oxidizing conditions [2]. 
However, the conventional roasting reduction-leaching 
method using coal as reducing agent requires a high 
reaction temperature of 800 °C and leads to pollution and 
greenhouse gas emissions [3]. There have also been 
reports of new kinds of reducing agents, such as 
carbohydrates and biomass from agricultural waste  
[4−7]. CHENG et al [8] indicated that low-grade 
manganese dioxide ores can be fully reduced with 
biomass cornstalk at 500 °C with cornstalk to ore mass 

ratio of 3:10 in air. ZHAO et al [9] found that manganese 
oxide ore can be reduced largely by roasting with 
biomass straw, which is a renewable biomass resource at 
temperatures below 650 °C. 

Recently, our research group found that low-grade 
pyrolusite also can be reduced completely with bagasse 
at 500 °C, which is an abundant and renewable biomass 
resource coming from the sugarcane juice extraction  
[10]. In 2010, the total output of sugarcane bagasse in 
China was more than 15 million tons. Furthermore, 
carbon emissions from bagasse utilization have the same 
value as carbon fixed through photosynthesis by the 
plant, thus the overall net carbon emissions from biomass 
utilization makes no addition to greenhouse gases. 
Therefore, making use of bagasse to reduce pyrolusite 
can not only lower the cost, but also comply with the 
requirements of green economy. 

CHENG et al [8], ZHAO et al [9] and our former 
research showed that the mass ratio of biomass to 
manganese ore, the roasting temperature and the roasting 
time are key factors of the reduction roasting process. 
These parameters have been investigated previously   
by the one variable at a time approach (OVAT), which  
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changes the level of one factor at a time, while keeping 
the value of the other factors constant. This approach is 
not only time- and work-demanding, but also completely 
omits any effects of the interaction between different 
factors. In order to solve these problems, it is necessary 
to use a multivariate statistical technique to optimize the 
reduction roasting process. Response surface 
methodology (RSM) can analyze multiple parameters 
and their interactions based on statistically-based 
optimization strategy [11−13]. It has been proven to be a 
powerful statistical tool in the process optimization 
[14−19]. However, RSM approach has not been used to 
optimize the reduction roasting process of low-grade 
pyrolusite with bagasse. 

In the present work, the reduction roasting process 
of low-grade pyrolusite using bagasse as a reducing 
agent was investigated. The mass ratio of bagasse to ore, 
roasting temperature and roasting time were selected as 
the three influencing factors, and leaching recovery rate 
of manganese was the response. RSM based on the 
central composite design (CCD) was employed to 
determine the optimal conditions and a quadratic model 
correlating the leaching recovery to the three variables 
was then developed. 
 
2 Experimental 
 
2.1 Materials 

The sample of pyrolusite ore obtained from Mugui 
manganese mine, Guangxi, China, was crushed, ground 
and sieved to provide raw material with particle size 
ranging from 109 μm to 150 μm. The chemical 
composition of the manganese ore is given in Table 1. 
 
Table 1 Chemical composition of manganese ore sample (mass 
fraction, %) 

Mn Fe MnO2 SiO2 Al2O3 
22.01 11.16 30.96 27.62 10.93 

CaO MgO S P 
0.09 0.12 0.020 0.181 

 
The bagasse was supplied by Nanning sugarcane 

refinery in Guangxi, China. Before the experiments, it 
was pulverized to be powder-like with a particle size 
about 0.178 mm. The analysis of the bagasse is shown in 
Table 2. 

 
Table 2 Analysis of bagasse sample 

Preliminary analysis/% Biomass constituent/% 
Moisture 8.73 Cellulose 40.02 
Volatiles 74.26 Hemicellulose 33.21 

Ash 3.31 Lignin 18.89 
Fixed carbon 13.7   

2.2 Experimental procedure 
The pyrolusite and bagasse were completely mixed 

in a crucible and roasted in a tube furnace under 
oxygen-free conditions. Before roasting, the tube furnace 
was purged with a flow of nitrogen gas to remove air. 
After roasting was completed, the roasted product was 
cooled to room temperature in inert gas and leached in  
3 mol/L sulfuric acid solution with stirring speed of 100 
r/min at 50 °C for 40 min. The leaching recovery of 
manganese was calculated by the determination of its 
concentration in the filtrate and the residue using titration 
with ferrous ammonium sulfate as GB/T 1506—2002. 
 
2.3 Analysis method 

Based on previous work [8,9], three reaction factors, 
namely the mass ratio of bagasse to manganese ore (X1, 
g/g), roasting temperature(X2, °C), and roasting time (X3, 
min) are considered independent variables. The 
dependent variables are the leaching recovery rate of 
manganese (Y, %). 

RSM is an empirical statistical technique employed 
for multiple regression analysis by using quantitative 
data obtained from properly designed experiments to 
solve multivariate equations simultaneously [11−16]. In 
this work, RSM is used to assess the relationship 
between the response (Y) and the independent variables, 
as well as to optimize the relevant variables in order to 
predict the best value for the response. 

The central composite rotatable design (CCD) is the 
most widely used RSM approach. According to GUVEN 
et al [12], CCD is an effective design for sequential 
experimentation since it allows reasonable amount of 
information to test the lack-of-fit with a sufficient 
number of experimental values. Therefore, CCD has 
been employed to determine the effect of operational 
variables on the leaching recovery rate of manganese. 
The three-factor layout of the CCD is shown in Fig. 1. 
 

 
Fig. 1 Central composite design for three factors 
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By defining the distance from the center of the design 
space to a factorial point as ±1 unit for each factor, the 
distance from the center to axial (star) points is ±α (|α|>1) 
[11,13]. It is composed of a core factorial that forms a 
cube with sides that are two coded units in length (from 
−1 to +1 as noted in Fig. 1). 

The coded variables (x) and actual variables (X) for 
CCD are shown in Table 3 and Table 4. The relationship 
between the coded variables and actual variables can be 
expressed as follows [11]: 
 

/}2/)]min()[max({ iiii XXXx +−=  
}2/)]min(){[max( ii XX −                  (1) 

 
Table 3 Levels of independent variables for CCD 

Variable Factor Min Max

X1 Mass ratio/(g·g−1) 0.07 0.09

X2 Roasting temperature/°C 6.00 18.00

X3 Roasting time/min 30.0 50.0

 
Table 4 Coded variables and actual variables for CCD 

Coded variable  Actual variable 

xi(i=1,2,3)  X1/(g·g−1) X2/°C X3/min 

−1.68  0.063 416 23 

−1.00  0.070 450 30 

0.00  0.080 500 40 

1.00  0.090 550 50 

1.68  0.097 584 57 

 
Each numerical factor is varied over 5 levels in the 

determined ranges, based on preliminary experiments. 
The conventional choice for the CCD is to execute a 
rotatable design with the axial points at |α|=1.682 coded 
units from the center. As a result, the total number of 
experiments in this design is calculated as 20 (2k+2k+6, 
where k is the number of factors, and k=3). Meanwhile, 8 
factorial points, 6 axial points and 6 replications of the 
central points are added to check the degree of fitting of 
the model. 

The leaching rate recovery (Y, %), influenced by 
three independent variables, was set as the desired goal 
(response) through fitting a second-order polynomial 
regression model: 
 

3 3 3 32
0

1 1 1 1= = = = +
= + + + +∑ ∑ ∑ ∑i i ii i ij i j

i i i j i
y x x x xβ β β β ε       (2) 

 
where y is the predicted response of Y or R; β0 is the 
coefficient for the intercept; βi is the coefficient of linear 
effect; βii is the coefficient of quadratic effect; βij is the 
coefficient of interactive effect; ε is a term representing 
other sources of variability not accounted by the 

response function; xi and xj are coded independent 
variables. The quality of the fitness of polynomial model 
is expressed by the value of correlation coefficient (R2). 
The main indicators demonstrating the significance and 
adequacy of the model include the F-value (Fisher 
variation ratio), p-value (probability value), and adequate 
precision [11]. The consideration of multiple responses 
involves the initial creation of suitable response surface 
model and subsequent identification for the operational 
conditions that maximize targeted response or 
maintenance of those in the most desired ranges [11]. 
 
3 Results and discussion 
 
3.1 Chemistry of roasting reduction 

As seen in Fig. 2, the reducing gas CO was 
produced by the pyrolysis of bagasse during the roasting 
under oxygen-free conditions [20,21]. 
 
CxHyOz→ CO+H2O                          (3) 
 

 

Fig. 2 Thermal analysis of bagasse in N2 

 
The reducing gas produced in the pyrolysis  

provides a reducing atmosphere, which promotes the 
reduction of pyrolusite. The oxides of manganese are 
reduced from high valent state to low valent state (Fig. 3) 
[1,22,23]: 
 
MnO2→Mn2O3→Mn3O4→MnO              (4) 
 

The chemical reactions involved in the reducing 
process are 
 
MnO2+CO→Mn2O3+CO2                                 (5) 
 
Mn2O3+CO→Mn3O4+CO2                                (6) 
 
Mn3O4+CO→MnO+CO2                                  (7) 
 

The overall reduction reaction can be expressed as 
follows: 
 
CxHyOz+MnO2 →MnO+CO2 +H2O              (8) 
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Fig. 3 XRD patterns of pyrolusite sample (a) and its roasted 
product (b) 
 
3.2 Response analysis and interpretation 

A total of 20 runs of the CCD experiment responses 
are shown in Table 5. The leaching recovery varied 
between 90.0% and 99.1%. 

Further numerical analysis of the response results 
(Table 5) is shown in Table 6. The cubic model is not 
considered to fit the response since the central composite 
design cannot support a full cubic model and not all the 

cubic model parameters can be uniquely estimated. 
Instead, according to the sequential model sum of 
squares and lack of fit tests, the model with the highest 
order polynomial is selected, if the additional terms are 
significant and the model is not aliased and has 
insignificant lack-of-fit. The lack of fit error is 
significantly larger than the pure error, indicating that 
something remaining in the residuals can be removed by 
a more appropriate model. In addition, a significant lack 
of fit (Prob.>F value 0.10 or smaller) indicates that the 
model cannot be used to predict the response. Since a 
lack of fit is not desirable, a small F value and 
probability greater than 0.1 are needed. In this work, the 
Quadratic model produces a lack of fit F value of 0.890 
with p-value of 0.9788, and the Prob. value for the 
Quadratic terms and the linear terms are less than 0.0001 
and 0.1, respectively. These results mean the Quadratic 
model is suitable to the selected response. 

The ANOVA result of the quadratic model for the 
leaching recovery rate is listed in Table 7. The model 
F-value of 39.86 implies that the model is significant. 
There is only a 0.01% chance that this large model 
F-value could occur by chance. Values of ‘‘Prob. >F ” of 
less than 0.050 indicate that the model terms are 
significant [11]. In this case, x1, x2, x3, x1x2, 2

1x  and 2
2x  

 
Table 5 Central composite design arrangement and results 

Coded variable Actual variable Y/% 
Run 

x1 x2 x3 X1 X2 X3 Observed Predicted 

1 −1 −1 −1 0.070 450 30 90.4 90.0 

2 1 −1 −1 0.090 450 30 96.4 96.3 

3 −1 1 −1 0.070 550 30 94.0 93.8 

4 1 1 −1 0.090 550 30 97.0 96.9 

5 −1 −1 1 0.070 450 50 91.1 90.9 

6 1 −1 1 0.090 450 50 97.5 97.3 

7 −1 1 1 0.070 550 50 95.6 95.3 

8 1 1 1 0.090 550 50 98.3 98.3 

9 −1.682 0 0 0.063 500 40 90.7 91.2 

10 1.682 0 0 0.097 500 40 99.1 99.1 

11 0 −1.682 0 0.080 416 40 90.7 91.0 

12 0 1.682 0 0.080 584 40 94.9 95.1 

13 0 0 −1.682 0.080 500 23 95.5 95.8 

14 0 0 1.682 0.080 500 57 97.5 97.8 

15 0 0 0 0.080 500 40 97.7 97.4 

16 0 0 0 0.080 500 40 98.1 97.4 

17 0 0 0 0.080 500 40 98.3 97.4 

18 0 0 0 0.080 500 40 97.4 97.4 

19 0 0 0 0.080 500 40 96.7 97.4 

20 0 0 0 0.080 500 40 96.4 97.4 
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Table 6 Model fitting for designed experiments 

Sum of squares by sequential model 

Source Sum of squares df Mean square F p-value  

Mean vs. total 183016.70 1 183016.7    

Linear vs. mean 101.344 3 33.781 10.849 0.0004  

2FI vs. linear 5.662 3 1.888 0.556 0.6534  

Quadratic vs. 2FI 40.056 3 13.352 32.571 < 0.0001 Suggested 

Cubic vs. quadratic 0.254 4 0.064 0.0991 0.9788 Aliased 

Residual 3.845 6 0.641    

Total 183167.9 20 9158.394    

Lack of fit tests 

Source Sum of squares df Mean square F p-value  

Linear 46.863 11 4.260 7.209 0.0205  

2FI 41.201 8 5.150 8.714 0.0145  

Quadratic 1.144 5 0.229 0.387 0.8394 Suggested 

Cubic 0.890 1 0.890 1.507 0.2743 Aliased 

Pure error 2.955 5 0.591    

Model summary statistics 

 Std.  

Source Dev. R-squared
Adjusted 
R-squared 

Predicted 
R-squared

PRESS 
 

Linear 1.764 0.670 0.609 0.499 75.651  

2FI 1.843 0.708 0.573 0.449 83.233  

Quadratic 0.640 0.973 0.948 0.914 13.000 Suggested 

Cubic 0.801 0.975 0.919 -0.326 200.528 Aliased 

 
Table 7 Analysis of variance for response surface quadratic model 

Source Sum of squares df Mean square F p-value (Prob. > F)  
Model 147.0632 9 16.3404 39.8603 <0.0001 Significant 

x1 76.2847 1 76.2847 186.0871 <0.0001  
x2 20.1462 1 20.1462 49.1442 <0.0001  
x3 4.9131 1 4.9131 11.9850 0.0061  

x1 x2 5.5278 1 5.5278 13.4844 0.0043  
x1 x3 0.0021 1 0.0021 0.0052 0.9442  
x2 x3 0.1326 1 0.1326 0.3235 0.5821  

2
1x  9.1589 1 9.1589 22.3422 0.0008  
2
2x  34.0064 1 34.0064 82.9546 <0.0001  
2
3x  0.6921 1 0.6921 1.6883 0.2230  

Residual 4.0994 10 0.4099    
Lack of fit 1.1444 5 0.2289 0.3873 0.8394 Not significant 
Pure error 2.955 5 0.591    
Cor. total 151.1626 19     

R2 =0.9729, RAdj
2 =0.9485, RPred

2 =0.9140, Adeq precision=20.181 
 
are the significant model terms. That is, among the three 
independent variables tested, the mass ratio (p<0.0001) 
and roasting temperature (p<0.0001) have significant 
linear effects as well as their quadratic effects on the 
leaching recovery. The roasting time also shows a 

negative quadratic effect on the leaching recovery, with a 
relatively smaller linear impact. The “lack of fit F-value” 
of 0.39 implies that the lack of fit is not significant 
relatively to the pure error. There is a 83.94% chance 
that a “lack of fit F-value” could occur by chance. The 
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“RPred
2” of 0.9140 is in reasonable agreement with the 

value “RPred
2” of 0.9485. 

According to MYERS et al [11], for a good fitness 
of a model, the correlation coefficient should be at least 
0.80. The “Pred R-squared” of 0.94 is in reasonable 
agreement with the “Adj R-squared” of 0.95. “Adeq 
precision” measures the signal to noise ratio. A ratio 
greater than 4 is desirable so the ratio of 25.380 indicates 
an adequate signal. Hence, the model can be used to 
navigate the design space. 

The constants and coefficients were obtained by 
fitting the data listed in Table 6 into Eq. (2) and are 
shown in Table 8. The equation in terms of coded factors 
is obtained. 
 
Y=97.40+2.36x1+1.21x2+0.6x3−0.83x1x2+ 

0.016x1x3+0.13x2x3−0.80 2
1x −1.54 2

2x −0.22 2
3x   (9) 

 
It is important to confirm that the selected model 

provides an adequate approximation to the real system. 
By using the diagnostic plots, including normal 
probability vs. studentized residuals and the predicted vs. 
actual value, the model adequacy can be judged [11,19]. 

Figure 4 shows the normal probability plots of the 
studentized residuals for the initial discharge capacity. 
The normal probability plot indicates that the residuals 
follow a normal distribution, and the points follow a 
straight line, verifying that the model is valid and 
plausibly fits the experimental data. 

As seen in Fig. 5, the actual response values are the 
experimental data for a particular run, and the predicted 
response values are evaluated by the approximating 
functions. The predicted values are in good agreement 
with the experimental values, indicating that the model is 
valid and successfully fits the experimental data. 

 
3.3 Response surfaces 

To achieve better understanding of the interactions 

 

 

Fig. 4 Normal probability plot of studentized 
 

 
Fig. 5 Linear correlation between actual and predicted leaching 
ratios of Mn 

 
of the variables and to determine the optimum level of 
each variable for the maximum leaching recovery rate of 
manganese, three-dimensional response surfaces plots of 
the relationship between x2 and x3, x1 and x3, x1 and x2 
were calculated and are illustrated in Fig. 6. The values 

 
Table 8 Regression coefficients for refitted model 

95% confidence interval 
Factor 

Coefficient 
estimated 

df 
Standard 

error Low High 
Variance inflation factor 

Intercept 97.4029 1 0.2611 0.2611 97.9847  

x1 2.3634 1 0.1732 0.1732 2.7494 1 

x2 1.2145 1 0.1732 0.1732 1.6006 1 

x3 0.5997 1 0.1732 0.1732 0.9858 1 

x1 x2 −0.8312 1 0.2263 0.2263 −0.3268 1 

x1 x3 0.0163 1 0.2263 0.2263 0.5206 1 

x2 x3 0.1287 1 0.2263 0.2263 0.6331 1 
2
1x  −0.7972 1 0.1686 0.1686 −0.4214 1.0182 
2
2x  −1.5361 1 0.1686 0.1686 −1.1603 1.0182 
2
3x  −0.2192 1 0.1686 0.1686 0.1566 1.0182 
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Fig. 6 Response surface plots for mass ratio vs roasting 
temperature (a), mass ratio vs roasting time (b) and roasting 
temperature vs roasting time(c) 
 
of x1, x2 and x3 were held constant at their average  
values. The figures are constructed to assess the 
interactive relationships between the independent 
variables and the response. 

Figure 6(a) shows the leaching recovery rate of 
mangnese as a function of the mass ratio and roasting 
temperature, while the roasting time keeps constant (40 
min). The mass ratio has a significant positive effect on 
the leaching recovery. The leaching recovery rate 
increased quickly as the mass ratio increased. This can 
be easily explained by the fact that the amount of 

reducing gases increased with the increase of the mass 
ratio. However, the leaching recovery rate only slightly 
increased when mass ratio increased to 0.08. 

As shown in Fig. 6(b), the leaching recovery rate 
increased with the increased roasting time, but compared 
with mass ratio, the roasting time has a smaller effect on 
the leaching recovery rate. This means that the roasting 
time has a weaker effect on the leaching recovery rate. 

Figure 6(c) shows the effect of the roasting time and 
the roasting temperature on the leaching recovery rate for 
a constant mass ratio. It can be seen that the leaching 
recovery rate depends significantly on the roasting 
temperature, first increasing and then decreasing with the 
increase of roasting temperature. This decrease may be 
explained since at high temperatures other metal oxides 
(such as Fe2O3) can be reduced to a lower valent state 
and deplete some of the reducing gases. 
 
3.4 Determination of optimum conditions 

The aim of this study is to investigate the values of 
the three operational parameters (mass ratio, roasting 
temperature and roasting time) that maximize the 
leaching recovery rate, using response surface analysis. 
As the fitted model, Eq. (3) was checked for adequacy of 
fitness in the region defined by the coordinates of the 
design and was found to be adequate. The model was 
used to locate the coordinates of the stationary point [11]. 
Accordingly, the fitted model can be used to optimize 
and maximize the leaching recovery rate of manganese 
within the experimental range studied. The optimum 
levels of variables are found to be a mass ratio of 0.09, 
roasting temperature of 450 °C and roasting time of 30 
min with a prediction of 98.1% for the leaching recovery 
rate of manganese. In order to test the validity of the 
optimum condition achieved by the empirical model, a 
confirmatory experiment was carried out using these 
optimal levels. The actual experimental datum is 98.2% 
while the predicted value is 98.1%. As a result, the model 
from response surface methodology is considered to be 
accurate and reliable for predicting the leaching recovery 
rate of manganese. 

 
4 Conclusions 

 
Response surface methodology successfully applied 

for the reduction roasting of low-grade manganese 
dioxide ore by bagasse. According to the satisfied 
second-order polynomial equation, the optimal condition 
was determined as bagasse to manganese ore mass ratio 
of 0.9:10, roasting time of 30 min at 450 °C. Under the 
optimum conditions, the predicted leaching recovery rate 
of manganese is 98.1%, confirmed by the experiment as 
98.2%. The demonstration of the response surface 
methodology can be applied to the optimization of the 
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reduction roasting process for low-grade pyrolusite by 
bagasse under oxygen-free conditions efficiently. 
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响应面优化蔗渣焙烧还原低品位软锰矿的工艺 
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摘  要：采用基于统计的优化策略优化了无氧条件下蔗渣焙烧还原低品位软锰矿的工艺。用中心组合设计收集实

验数据，用二次模型表示锰浸出率与渣矿比(蔗渣与锰矿质量比)、焙烧温度、焙烧时间的函数关系，用统计分析 
(ANOVA) 研究变量及变量的相互作用对浸出过程的影响。结果表明，渣矿比和焙烧温度对浸出过程的影响比焙

烧时间的大，渣矿比和焙烧温度的线性项、二次项及其交互作用影响显著，而焙烧时间的影响却较小。利用所得

的二次模型可得最佳工艺参数：渣矿比 0.9:10 、焙烧温度 450 °C、焙烧时间 30 min。在优化条件下，锰浸出率

的预测值为 98.1%，实验值为 98.2%. 
关键词：软锰矿；焙烧还原；蔗渣；响应面方法 
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