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Abstract: The reduction roasting processes for low-grade pyrolusite using bagasse as the reducing agent was statistically analyzed.
The central composite rotatable design (CCD) was used to optimize this reduction roasting processes. The three process parameters
studied were the mass ratio of bagasse to ore, the roasting temperature and the roasting time. Analysis of variance (ANOVA) was
used to analyze the experimental results. The interactions between the process parameters were done by using the linear and
quadratic model. The results revealed that the linear and quadratic effects as well as the interaction are statistically significant for the
mass ratio and roasting temperature but insignificant for the roasting time. The optimal conditions of 0.9:10 of mass ratio, the
roasting temperature of 450 °C, the roasting time of 30 min were obtained. Under these conditions, the predicted leaching recovery
rate for manganese was 98.1%. And the satistied experimental result of 98.2% confirmed the validity of the model.
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1 Introduction

Manganese is a strategic element that has several
important industrial applications such as steel production,
carbon—zinc batteries production, as well as fertilizers,
colorants and medicines. The world rapidly growing
demand for manganese and the gradual depletion of high
grade manganese ore have made it increasingly
important to develop processes for economical recovery
of manganese from low-grade pyrolusite [1]. The
extraction of manganese from pyrolusite must be carried
out by reducing process because manganese dioxide is
stable both in acid and alkaline oxidizing conditions [2].
However, the conventional roasting reduction-leaching
method using coal as reducing agent requires a high
reaction temperature of 800 °C and leads to pollution and
greenhouse gas emissions [3]. There have also been
reports of new kinds of reducing agents, such as
carbohydrates and biomass from agricultural waste
[4—7]. CHENG et al [8] indicated that low-grade
manganese dioxide ores can be fully reduced with
biomass cornstalk at 500 °C with cornstalk to ore mass

ratio of 3:10 in air. ZHAO et al [9] found that manganese
oxide ore can be reduced largely by roasting with
biomass straw, which is a renewable biomass resource at
temperatures below 650 °C.

Recently, our research group found that low-grade
pyrolusite also can be reduced completely with bagasse
at 500 °C, which is an abundant and renewable biomass
resource coming from the sugarcane juice extraction
[10]. In 2010, the total output of sugarcane bagasse in
China was more than 15 million tons. Furthermore,
carbon emissions from bagasse utilization have the same
value as carbon fixed through photosynthesis by the
plant, thus the overall net carbon emissions from biomass
utilization makes no addition to greenhouse gases.
Therefore, making use of bagasse to reduce pyrolusite
can not only lower the cost, but also comply with the
requirements of green economy.

CHENG et al [8], ZHAO et al [9] and our former
research showed that the mass ratio of biomass to
manganese ore, the roasting temperature and the roasting
time are key factors of the reduction roasting process.
These parameters have been investigated previously
by the one variable at a time approach (OVAT), which
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changes the level of one factor at a time, while keeping
the value of the other factors constant. This approach is
not only time- and work-demanding, but also completely
omits any effects of the interaction between different
factors. In order to solve these problems, it is necessary
to use a multivariate statistical technique to optimize the
reduction  roasting  process. Response  surface
methodology (RSM) can analyze multiple parameters
and their interactions based on statistically-based
optimization strategy [11—13]. It has been proven to be a
powerful statistical tool in the process optimization
[14—19]. However, RSM approach has not been used to
optimize the reduction roasting process of low-grade
pyrolusite with bagasse.

In the present work, the reduction roasting process
of low-grade pyrolusite using bagasse as a reducing
agent was investigated. The mass ratio of bagasse to ore,
roasting temperature and roasting time were selected as
the three influencing factors, and leaching recovery rate
of manganese was the response. RSM based on the
central composite design (CCD) was employed to
determine the optimal conditions and a quadratic model
correlating the leaching recovery to the three variables
was then developed.

2 Experimental

2.1 Materials

The sample of pyrolusite ore obtained from Mugui
manganese mine, Guangxi, China, was crushed, ground
and sieved to provide raw material with particle size
ranging from 109 pm to 150 pm. The chemical
composition of the manganese ore is given in Table 1.

Table 1 Chemical composition of manganese ore sample (mass
fraction, %)

Mn Fe MnO, SiO, Al,O4
22.01 11.16 30.96 27.62 10.93
Ca0O MgO S P
0.09 0.12 0.020 0.181

The bagasse was supplied by Nanning sugarcane
refinery in Guangxi, China. Before the experiments, it
was pulverized to be powder-like with a particle size
about 0.178 mm. The analysis of the bagasse is shown in
Table 2.

Table 2 Analysis of bagasse sample

Preliminary analysis/% Biomass constituent/%
Moisture 8.73 Cellulose 40.02
Volatiles 74.26 Hemicellulose 33.21

Ash 331 Lignin 18.89
Fixed carbon 13.7

2.2 Experimental procedure

The pyrolusite and bagasse were completely mixed
in a crucible and roasted in a tube furnace under
oxygen-free conditions. Before roasting, the tube furnace
was purged with a flow of nitrogen gas to remove air.
After roasting was completed, the roasted product was
cooled to room temperature in inert gas and leached in
3 mol/L sulfuric acid solution with stirring speed of 100
r/min at 50 °C for 40 min. The leaching recovery of
manganese was calculated by the determination of its
concentration in the filtrate and the residue using titration
with ferrous ammonium sulfate as GB/T 1506—2002.

2.3 Analysis method

Based on previous work [8,9], three reaction factors,
namely the mass ratio of bagasse to manganese ore (X,
g/g), roasting temperature(X,, °C), and roasting time (X;,
min) are considered independent variables. The
dependent variables are the leaching recovery rate of
manganese (Y, %).

RSM is an empirical statistical technique employed
for multiple regression analysis by using quantitative
data obtained from properly designed experiments to
solve multivariate equations simultaneously [11-16]. In
this work, RSM 1is used to assess the relationship
between the response (Y) and the independent variables,
as well as to optimize the relevant variables in order to
predict the best value for the response.

The central composite rotatable design (CCD) is the
most widely used RSM approach. According to GUVEN
et al [12], CCD is an effective design for sequential
experimentation since it allows reasonable amount of
information to test the lack-of-fit with a sufficient
number of experimental values. Therefore, CCD has
been employed to determine the effect of operational
variables on the leaching recovery rate of manganese.
The three-factor layout of the CCD is shown in Fig. 1.

X3
(0,0,a)l
(-1,-1, 1) d, -0
X2
S 1,1,1
L 1.-1) ( ) (0, -a, 0)
(-a, 0_,.0) / ( % 0, O)X]
(0, 2, 0) (1,-1,-1)
(-1,-1,-1
(-1,1,-1) (-1, 1,-1)
(o,o,—a)T

Fig. 1 Central composite design for three factors
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By defining the distance from the center of the design
space to a factorial point as £1 unit for each factor, the
distance from the center to axial (star) points is +a (|a[>1)
[11,13]. It is composed of a core factorial that forms a
cube with sides that are two coded units in length (from
—1to +1 as noted in Fig. 1).

The coded variables (x) and actual variables (X) for
CCD are shown in Table 3 and Table 4. The relationship
between the coded variables and actual variables can be
expressed as follows [11]:

x; = {X; —[max(X,)+min(X;)]/ 2}/
{[max(X;) —min(X;)]/ 2} M

Table 3 Levels of independent variables for CCD

Variable Factor Min  Max
X, Mass ratio/(g'g ') 0.07  0.09
X, Roasting temperature/°C 6.00 18.00
X; Roasting time/min 30.0 50.0

Table 4 Coded variables and actual variables for CCD
Coded variable

Actual variable

x(i=1,2,3) Xil(gg™h X,/°C Xy/min
-1.68 0.063 416 23
-1.00 0.070 450 30
0.00 0.080 500 40
1.00 0.090 550 50
1.68 0.097 584 57

Each numerical factor is varied over 5 levels in the
determined ranges, based on preliminary experiments.
The conventional choice for the CCD is to execute a
rotatable design with the axial points at |a|=1.682 coded
units from the center. As a result, the total number of
experiments in this design is calculated as 20 (2"4+2k+6,
where & is the number of factors, and k&=3). Meanwhile, 8
factorial points, 6 axial points and 6 replications of the
central points are added to check the degree of fitting of
the model.

The leaching rate recovery (Y, %), influenced by
three independent variables, was set as the desired goal
(response) through fitting a second-order polynomial
regression model:

y:ﬁ0+iﬁixi+iﬁiixi2+i 23: Byxix;+¢ (2)
i=1 i=1 i=1 j=i+1

where y is the predicted response of Y or R; S, is the

coefficient for the intercept; f; is the coefficient of linear

effect; f; is the coefficient of quadratic effect; f; is the

coefficient of interactive effect; ¢ is a term representing

other sources of variability not accounted by the

response function; x; and x; are coded independent
variables. The quality of the fitness of polynomial model
is expressed by the value of correlation coefficient (R?).
The main indicators demonstrating the significance and
adequacy of the model include the F-value (Fisher
variation ratio), p-value (probability value), and adequate
precision [11]. The consideration of multiple responses
involves the initial creation of suitable response surface
model and subsequent identification for the operational
targeted response or
maintenance of those in the most desired ranges [11].

conditions that maximize

3 Results and discussion

3.1 Chemistry of roasting reduction

As seen in Fig. 2, the reducing gas CO was
produced by the pyrolysis of bagasse during the roasting
under oxygen-free conditions [20,21].

C,H,0.— CO+H,0 3)
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Fig. 2 Thermal analysis of bagasse in N,

The reducing gas produced
provides a reducing atmosphere, which promotes the

in the pyrolysis

reduction of pyrolusite. The oxides of manganese are
reduced from high valent state to low valent state (Fig. 3)
[1,22,23]:

Mn02—>Mn203—>Mn3O4—>MnO (4)

The chemical reactions involved in the reducing
process are

Mn02+CO—>Mn203+C02 (5)
Mn203+CO—>Mn3O4+C02 (6)
Mn;0,+CO—>MnO+CO, (7)

The overall reduction reaction can be expressed as
follows:

CH,0,#MnO, —MnO+CO, +H,0 ®)
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Fig. 3 XRD patterns of pyrolusite sample (a) and its roasted
product (b)

3.2 Response analysis and interpretation

A total of 20 runs of the CCD experiment responses
are shown in Table 5. The leaching recovery varied
between 90.0% and 99.1%.

Further numerical analysis of the response results
(Table 5) is shown in Table 6. The cubic model is not
considered to fit the response since the central composite
design cannot support a full cubic model and not all the

Table 5 Central composite design arrangement and results

cubic model parameters can be uniquely estimated.
Instead, according to the sequential model sum of
squares and lack of fit tests, the model with the highest
order polynomial is selected, if the additional terms are
significant and the model is not aliased and has
insignificant lack-of-fit. The lack of fit error is
significantly larger than the pure error, indicating that
something remaining in the residuals can be removed by
a more appropriate model. In addition, a significant lack
of fit (Prob.>F value 0.10 or smaller) indicates that the
model cannot be used to predict the response. Since a
lack of fit is not desirable, a small F value and
probability greater than 0.1 are needed. In this work, the
Quadratic model produces a lack of fit F value of 0.890
with p-value of 0.9788, and the Prob. value for the
Quadratic terms and the linear terms are less than 0.0001
and 0.1, respectively. These results mean the Quadratic
model is suitable to the selected response.

The ANOVA result of the quadratic model for the
leaching recovery rate is listed in Table 7. The model
F-value of 39.86 implies that the model is significant.
There is only a 0.01% chance that this large model
F-value could occur by chance. Values of “Prob. >F” of
less than 0.050 indicate that the model terms are
significant [11]. In this case, x|, x, X3, X1X2, x12 and x22

Run Coded variable Actual variable Y%
X X X3 X X X Observed Predicted
1 -1 -1 -1 0.070 450 30 90.4 90.0
2 1 -1 -1 0.090 450 30 96.4 96.3
3 -1 1 -1 0.070 550 30 94.0 93.8
4 1 1 -1 0.090 550 30 97.0 96.9
5 -1 -1 1 0.070 450 50 91.1 90.9
6 1 -1 1 0.090 450 50 97.5 97.3
7 -1 1 1 0.070 550 50 95.6 953
8 1 1 1 0.090 550 50 98.3 98.3
9 —1.682 0 0 0.063 500 40 90.7 91.2
10 1.682 0 0 0.097 500 40 99.1 99.1
11 0 —1.682 0 0.080 416 40 90.7 91.0
12 0 1.682 0 0.080 584 40 94.9 95.1
13 0 0 —1.682 0.080 500 23 95.5 95.8
14 0 0 1.682 0.080 500 57 97.5 97.8
15 0 0 0 0.080 500 40 97.7 97.4
16 0 0 0 0.080 500 40 98.1 97.4
17 0 0 0 0.080 500 40 98.3 97.4
18 0 0 0 0.080 500 40 97.4 97.4
19 0 0 0 0.080 500 40 96.7 97.4
20 0 0 0 0.080 500 40 96.4 97.4
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Table 6 Model fitting for designed experiments

Sum of squares by sequential model

Source Sum of squares df Mean square F p-value
Mean vs. total 183016.70 1 183016.7
Linear vs. mean 101.344 3 33.781 10.849 0.0004
2F1 vs. linear 5.662 3 1.888 0.556 0.6534
Quadratic vs. 2F1 40.056 3 13.352 32.571 <0.0001 Suggested
Cubic vs. quadratic 0.254 4 0.064 0.0991 0.9788 Aliased
Residual 3.845 6 0.641
Total 183167.9 20 9158.394
Lack of fit tests
Source Sum of squares df Mean square F p-value
Linear 46.863 11 4.260 7.209 0.0205
2FI 41.201 8 5.150 8.714 0.0145
Quadratic 1.144 5 0.229 0.387 0.8394 Suggested
Cubic 0.890 1 0.890 1.507 0.2743 Aliased
Pure error 2.955 5 0.591

Model summary statistics

Std. Adjusted Predicted
PRESS
Source Dev. R-squared R-squared R-squared
Linear 1.764 0.670 0.609 0.499 75.651
2FI 1.843 0.708 0.573 0.449 83.233
Quadratic 0.640 0.973 0.948 0.914 13.000 Suggested
Cubic 0.801 0.975 0.919 -0.326 200.528 Aliased
Table 7 Analysis of variance for response surface quadratic model
Source Sum of squares df Mean square F p-value (Prob. > F)
Model 147.0632 9 16.3404 39.8603 <0.0001 Significant
X 76.2847 1 76.2847 186.0871 <0.0001
X2 20.1462 1 20.1462 49.1442 <0.0001
X3 49131 1 4.9131 11.9850 0.0061
X1 X, 5.5278 1 5.5278 13.4844 0.0043
X1 X3 0.0021 1 0.0021 0.0052 0.9442
X X3 0.1326 1 0.1326 0.3235 0.5821
x 9.1589 1 9.1589 22.3422 0.0008
x3 34.0064 1 34.0064 82.9546 <0.0001
x3 0.6921 1 0.6921 1.6883 0.2230
Residual 4.0994 10 0.4099
Lack of fit 1.1444 5 0.2289 0.3873 0.8394 Not significant
Pure error 2.955 5 0.591
Cor. total 151.1626 19

R>=0.9729, Rag> =0.9485, Rpred” =0.9140, Adeq precision=20.181

are the significant model terms. That is, among the three
independent variables tested, the mass ratio (p<0.0001)
and roasting temperature (p<0.0001) have significant
linear effects as well as their quadratic effects on the
leaching recovery. The roasting time also shows a

negative quadratic effect on the leaching recovery, with a
relatively smaller linear impact. The “lack of fit F-value”
of 0.39 implies that the lack of fit is not significant
relatively to the pure error. There is a 83.94% chance
that a “lack of fit F-value” could occur by chance. The
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“Rpred>” Of 0.9140 is in reasonable agreement with the
value “Rpeq”” of 0.9485.

According to MYERS et al [11], for a good fitness
of a model, the correlation coefficient should be at least
0.80. The “Pred R-squared” of 0.94 is in reasonable
agreement with the “Adj R-squared” of 0.95. “Adeq
precision” measures the signal to noise ratio. A ratio
greater than 4 is desirable so the ratio of 25.380 indicates
an adequate signal. Hence, the model can be used to
navigate the design space.

The constants and coefficients were obtained by
fitting the data listed in Table 6 into Eq. (2) and are
shown in Table 8. The equation in terms of coded factors
is obtained.

Y=97.40+2.36x,+1.2 Lxy+0.6x3—0.83x12,+
0.016x,x5+0.13x,03-0.80 x{ —1.54 x5 —0.22 x5 (9)

It is important to confirm that the selected model
provides an adequate approximation to the real system.
By using the diagnostic plots, including normal
probability vs. studentized residuals and the predicted vs.
actual value, the model adequacy can be judged [11,19].

Figure 4 shows the normal probability plots of the
studentized residuals for the initial discharge capacity.
The normal probability plot indicates that the residuals
follow a normal distribution, and the points follow a
straight line, verifying that the model is valid and
plausibly fits the experimental data.

As seen in Fig. 5, the actual response values are the
experimental data for a particular run, and the predicted
response values are evaluated by the approximating
functions. The predicted values are in good agreement
with the experimental values, indicating that the model is
valid and successfully fits the experimental data.

3.3 Response surfaces
To achieve better understanding of the interactions

Table 8 Regression coefficients for refitted model

=l
=]

— el Ln 100 WOND
o oD © oD O
T T

Normal probability/%

-1.72 -0.72 0.28 1.27 2.27
Internally studentized residuals

Fig. 4 Normal probability plot of studentized

99.20

96.88 |

94.55

92231

Predicted leaching ratio

89.90

89.99 92.27 94.55 96.84 99.12
Actual leaching ratio

Fig. 5 Linear correlation between actual and predicted leaching
ratios of Min

of the variables and to determine the optimum level of
each variable for the maximum leaching recovery rate of
manganese, three-dimensional response surfaces plots of
the relationship between x, and x3, x; and x3, x; and x;
were calculated and are illustrated in Fig. 6. The values

Factor Coefﬁcient Standard 95% confidence interval Variance inflation factor
estimated error Low High
Intercept 97.4029 1 0.2611 0.2611 97.9847

X 2.3634 1 0.1732 0.1732 2.7494 1
Xy 1.2145 1 0.1732 0.1732 1.6006 1
X3 0.5997 1 0.1732 0.1732 0.9858 1

X1 X, —0.8312 1 0.2263 0.2263 —0.3268 1

X1 X3 0.0163 1 0.2263 0.2263 0.5206 1

Xy X3 0.1287 1 0.2263 0.2263 0.6331 1
x7 —0.7972 1 0.1686 0.1686 —0.4214 1.0182
x3 —1.5361 1 0.1686 0.1686 —-1.1603 1.0182
x3 —0.2192 1 0.1686 0.1686 0.1566 1.0182
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Fig. 6 Response surface plots for mass ratio vs roasting
temperature (a), mass ratio vs roasting time (b) and roasting
temperature vs roasting time(c)

of x;, x, and x; were held constant at their average
values. The figures are constructed to assess the
interactive relationships between the independent
variables and the response.

Figure 6(a) shows the leaching recovery rate of
mangnese as a function of the mass ratio and roasting
temperature, while the roasting time keeps constant (40
min). The mass ratio has a significant positive effect on
the leaching recovery. The leaching recovery rate
increased quickly as the mass ratio increased. This can
be easily explained by the fact that the amount of

reducing gases increased with the increase of the mass
ratio. However, the leaching recovery rate only slightly
increased when mass ratio increased to 0.08.

As shown in Fig. 6(b), the leaching recovery rate
increased with the increased roasting time, but compared
with mass ratio, the roasting time has a smaller effect on
the leaching recovery rate. This means that the roasting
time has a weaker effect on the leaching recovery rate.

Figure 6(c) shows the effect of the roasting time and
the roasting temperature on the leaching recovery rate for
a constant mass ratio. It can be seen that the leaching
recovery rate depends significantly on the roasting
temperature, first increasing and then decreasing with the
increase of roasting temperature. This decrease may be
explained since at high temperatures other metal oxides
(such as Fe,O3) can be reduced to a lower valent state
and deplete some of the reducing gases.

3.4 Determination of optimum conditions

The aim of this study is to investigate the values of
the three operational parameters (mass ratio, roasting
temperature and roasting time) that maximize the
leaching recovery rate, using response surface analysis.
As the fitted model, Eq. (3) was checked for adequacy of
fitness in the region defined by the coordinates of the
design and was found to be adequate. The model was
used to locate the coordinates of the stationary point [11].
Accordingly, the fitted model can be used to optimize
and maximize the leaching recovery rate of manganese
within the experimental range studied. The optimum
levels of variables are found to be a mass ratio of 0.09,
roasting temperature of 450 °C and roasting time of 30
min with a prediction of 98.1% for the leaching recovery
rate of manganese. In order to test the validity of the
optimum condition achieved by the empirical model, a
confirmatory experiment was carried out using these
optimal levels. The actual experimental datum is 98.2%
while the predicted value is 98.1%. As a result, the model
from response surface methodology is considered to be
accurate and reliable for predicting the leaching recovery
rate of manganese.

4 Conclusions

Response surface methodology successfully applied
for the reduction roasting of low-grade manganese
dioxide ore by bagasse. According to the satisfied
second-order polynomial equation, the optimal condition
was determined as bagasse to manganese ore mass ratio
of 0.9:10, roasting time of 30 min at 450 °C. Under the
optimum conditions, the predicted leaching recovery rate
of manganese is 98.1%, confirmed by the experiment as
98.2%. The demonstration of the response surface
methodology can be applied to the optimization of the
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reduction roasting process for low-grade pyrolusite by
bagasse under oxygen-free conditions efficiently.
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