

Synthesis and characterization of LiFePO₄ coating with aluminum doped zinc oxide

Hao TANG¹, Long TAN², Jun XU¹

1. Department of Materials Science, Fudan University, Shanghai 200433, China;

2. Felie Li-ion Battery Manufacture Co., Ltd., Wuxi 214028, China

Received 10 September 2012; accepted 18 December 2012

Abstract: Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO₄ synthesized by solid-state method. The charge–discharge test results show that the rate performance and low-temperature performance of LiFePO₄ are greatly improved by the surface treatment. Even at 20C rate, the discharge specific capacity of 100.9 mA·h/g was obtained by the AZO-coated LiFePO₄ at room temperature. At –20 °C, the discharge specific capacity at 0.2C for un-coated LiFePO₄ and the coated one are 50.3 mA·h/g and 119.4 mA·h/g, respectively. It should be attributed to the electrically conductive AZO-coating which increases the electronic conductivity of LiFePO₄. Furthermore, the surface-coating increases the tap-density of LiFePO₄. The results indicate that the AZO-coated LiFePO₄ is a good candidate of cathode material for applying in lithium power batteries.

Key words: lithium ion battery; LiFePO₄; coating; cathode material; aluminum doped zinc oxide

1 Introduction

Olivine-type LiFePO₄, as a replacement of LiCoO₂, has attracted attention since the significant report in 1997 by good enough [1] in which it was proposed to be used as cathode material for lithium ion batteries. It has the advantages of environment benign, inexpensive, thermal stable and good cycling stability [2–4]. However, its imminent disadvantages of low electronic conductivity and low diffusion rate of lithium ion during the charge–discharge process destroy the rate performance [5–7], and the capacity decreases rapidly even at moderate current density.

Many reports have discovered that the electrical performance of LiFePO₄ can be improved by ion doping [8], carbon coating [9,10] and metal oxide coating [11–13]. Especially, coating carbon which is an electrically conductive material has been wildly applied in industry with advantages of facie, inexpensive and good effect to control the particle size of LiFePO₄. However, the electrically conductive carbon reduces the tap-density of LiFePO₄, which is being harmful to the energy density of the lithium ion battery [14]. Further-

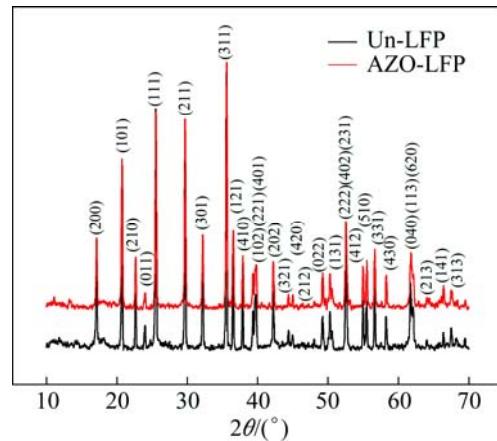
more, the low-temperature performance of carbon-coated LiFePO₄ is also needed to be improved [11].

In this work, the electrically conductive material of aluminum doped zinc oxide(AZO) is firstly applied to coating on the surface of LiFePO₄. It is reported that the insulated pure zinc oxide can be changed to be electrically conductive with doping appropriate metals such as indium, gallium and aluminum [15,16]. And the resistivity of the AZO film even can be decreased to 10^{–4} Ω·cm [16]. Besides, the solid density of zinc oxide (5.7 g/cm³) is even higher than that of the LiFePO₄ (3.6 g/cm³). Therefore, both the electrochemical properties and tap density of LiFePO₄ would be greatly improved by coating with the electrically conductive AZO. The low-temperature performance of the AZO-coated LiFePO₄ powders is also investigated.

2 Experimental

LiFePO₄ was synthesized by solid-state method using FeC₂O₄·2H₂O, NH₄H₂PO₄ and Li₂CO₃ as the raw materials. Stoichiometric FeC₂O₄·2H₂O, NH₄H₂PO₄ and Li₂CO₃ were full-mixed in isopropanol by ball milling for 2 h. Then the obtained slurry was dried at 80 °C. The

resulted powders were calcined at 700 °C for 8 h in a purified N₂ flow and the uncoated LiFePO₄ was obtained, which is signed as Un-LFP.


C₄H₆ZnO₄·2H₂O and C₈H₁₂Al₂O₉·4H₂O in the molar ratio of 43.7:1 were initially dissolved in distilled water. The Un-LFP was then added and the mixtures were stirred for 1 h in order to make the Un-LFP disperse homogeneously in the solution. The resultant solution was then dried at 120 °C to get the powder precursor. The powder precursor was calcined at 500 °C for 1 h in a purified N₂ flow and the LiFePO₄ coating with AZO was finally obtained ($m(\text{AZO}):[m(\text{LiFePO}_4)+m(\text{AZO})]=2\%$), signed as AZO-LFP.

All the reagents used in the experiment were of analytical purity and were used without further purification. Powder X-ray diffraction (XRD) analysis using Cu K α radiation was employed to identify the crystalline phase of the prepared powder with a Bruker D8-advance (German) at room temperature in the range of $10^\circ \leq 2\theta \leq 70^\circ$. The morphology was investigated with a field emission scan electron microscope (SEM, S-4800, Japan). The tap-density meter (BT-300, Dandong Bettersize Instruments Ltd., China) was applied to measuring the tap-density of the prepared powder. The coin cells were assembled by using lithium foil as anode in an argon-filled glove box, the as-prepared powders mixed with 12% acetylene black and 8% PVDF as the cathode and 1 mol/L LiPF₆ in a 1:1(V/V) mixture of ethylene carbonate (EC) and dimethylcarbonate(DMC) as the electrolyte, Celgard 2300 membrane as the cell separator. The charge–discharge cycle was performed in a voltage range of 2.0–3.8 V using the coin cells. All the electrical measurements were carried out by a battery testing system (Landet-5 V/10 mA, Landet Electronic Corporation, China) at room temperature.

3 Results and discussion

Figure 1 shows the XRD patterns of the Un-LFP and AZO-LFP powders. All diffraction lines can be indexed for the orthorhombic olive structure with *pmnb* space group (JCPDS card No. 40—1499) [11]. No peaks corresponding to AZO were observed, indicating that the low content of AZO compound cannot be detected by XRD. The lattice constants of the Un-LFP and AZO-LFP powders have been refined and tabulated in Table 1. It is consistent with that of the standard LiFePO₄ and the results obtained in other reports [11,13]. The result also confirms that the surface modification with AZO did not cause the change in lattice constants. This indicates that the Al³⁺ and Zn²⁺ ions are adhere on the surface of the LiFePO₄ powders as AZO coating rather than diffuse into LiFePO₄ lattice. And more, the tap-densities of the Un-LFP and AZO-LFP powders were also measured and

tabulated in Table 1. It is obvious that the tap density of LiFePO₄ is improved by the AZO coating. The result is different from that of the carbon coating and is significant for applying in lithium power batteries.

Fig. 1 XRD patterns of Un-LFP and AZO-LFP powders collected by steps of 0.02° in $10^\circ \leq 2\theta \leq 70^\circ$

Table 1 Calculated structure parameters and tap-densities of Un-LFP and AZO-LFP powders

Production	<i>a</i> /nm	<i>b</i> /nm	<i>c</i> /nm	<i>V</i> /nm ³	Tap density/(g·cm ⁻³)
Un-LFP	1.0327	0.6007	0.46961	0.2910	0.9
AZO-LFP	1.0319	0.6006	0.46913	0.2908	1.5

The SEM images of the Un-LFP and AZO-LFP powders are shown in Fig. 2. It can be clearly seen in Fig. 2(a) that the surface of Un-LFP powder is smooth with little sponge-like material coating on and between the particles. It can be attributed to the decomposition of C₂O₄²⁻ in FeC₂O₄·2H₂O in purified N₂ flow, which causes little carbon remain. As seen in Fig. 2(b), the surfaces of LiFePO₄ particles are covered by some well-distributed nano-particles, which should be the AZO material. It proves that the AZO material has been successfully coated on the surface of LiFePO₄, which is consistent with the XRD result mentioned above.

The initial charge–discharge curves of the Un-LFP and AZO-LFP powders tested at different current densities are shown in Fig. 3(a). The cells were firstly charged to 3.8 V at the constant current density, then charged until the charge current density decreased to 0.05C, and finally discharged to 2.0 V at the constant current density. All these curves have the smooth plateaus, indicating the well-crystallized structure of the both samples. The initial charge–discharge specific capacities of the Un-LFP powders at 0.1C and 1C are 156.3/150.3 mA·h/g and 145.5/130.9 mA·h/g, respectively. For the AZO-LFP powders, 165.8/160.1 mA·h/g and 158.1/148.0 mA·h/g were obtained at 0.1C

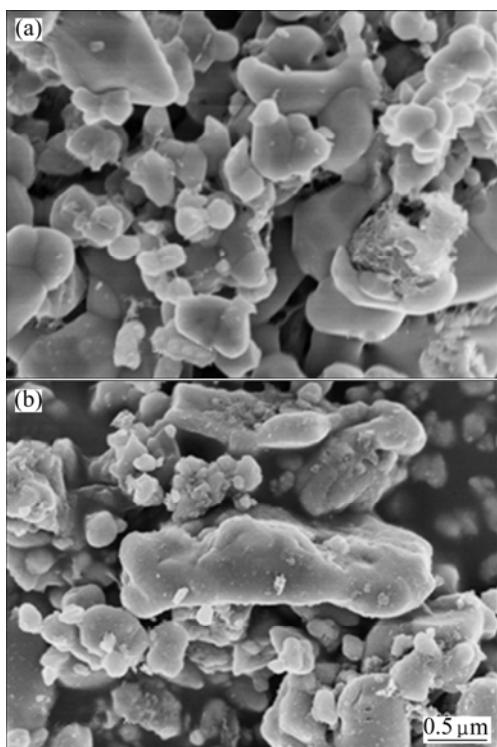


Fig. 2 SEM images of Un-LFP (a) and AZO-LFP powders (b)

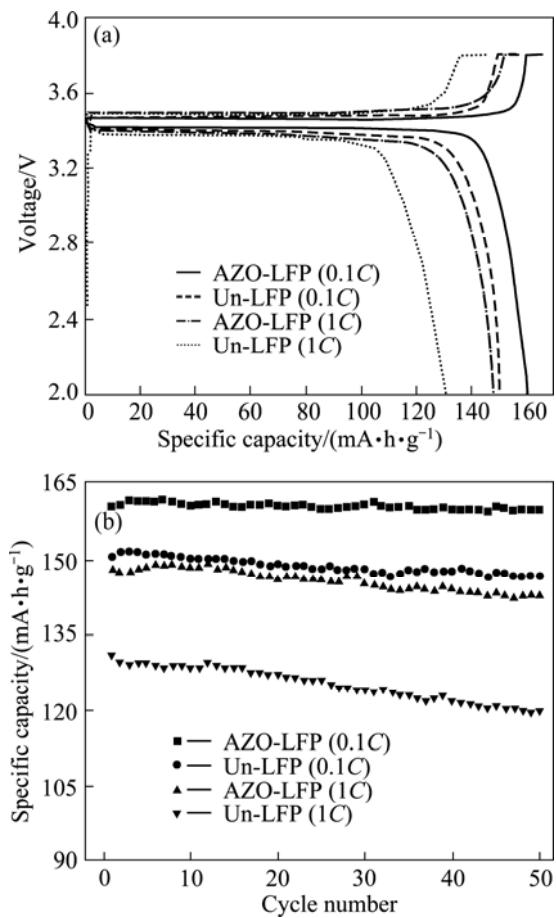


Fig. 3 Initial charge-discharge curves (a) and cycling properties (b) of Un-LFP and AZO-LFP powders tested at room temperature

and 1C, respectively. Furthermore, it is obvious that lower discharge plateau is obtained for the curves of the Un-LFP powders, which attributes to the more sever polarization caused by the poor electronic conductivity of LiFePO₄ particles. The results well prove that the electrically conductive AZO coating increases the electronic conductivity of LiFePO₄, and then improves the specific capacities especially at a high rate.

Figure 3(b) shows the cycle performance of the Un-LFP and AZO-LFP powders. Good results at 0.1C are obtained for the both samples. About 99.5% and 97.4% of the initial capacities are retained for the AZO-LFP and Un-LFP powders. When the current density is increased to 1C, 96.5% of the initial specific capacity is retained for the AZO-LFP powders, but only 91.3% for the Un-LFP powders. This result demonstrates that the AZO coating can improve the cycling stability of LiFePO₄. This improvement is largely due to the presence of AZO which could impede the reaction between the cathode particles and electrolyte [10].

To evaluate the rate capability of the Un-LFP and AZO-LFP, the discharge curves tested at different rates are shown in Fig. 4. For the Un-LFP (Fig. 4(a)), the discharged specific capacity decreases dramatically with increasing the discharge rate. When the rate increases to

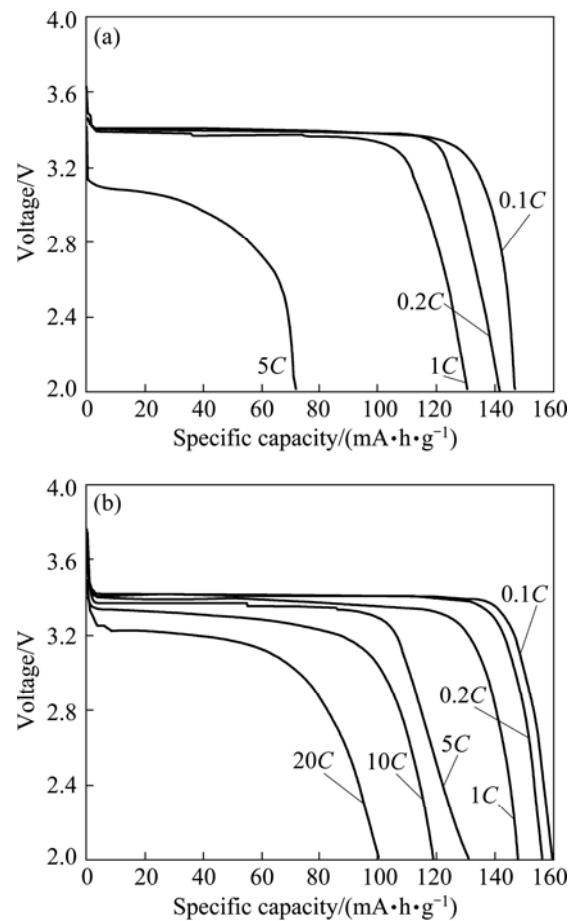
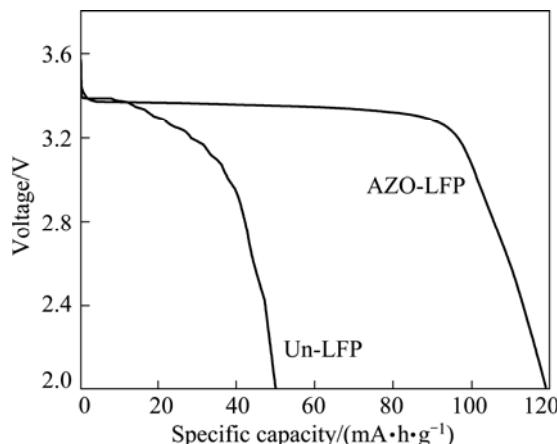



Fig. 4 Rate performance of Un-LFP (a) and AZO-LFP (b) powders at room temperature

5C, only 72.0 mA·h/g of the specific capacity is retained for the Un-LFP. However, good rate performance is obtained for AZO-LFP, as shown in Fig. 4(b). The discharge specific capacity can reach 100.9 mA·h/g even at 20C rate, indicating that the AZO-LFP is a good candidate of cathode material for lithium power batteries.

Figure 5 displays the initial discharge curves of the Un-LFP and AZO-LFP (0.2C) tested at -20°C . Apparently, the Un-LFP has a bad low-temperature performance shown in Fig. 5. After coating the AZO material, a smooth plateau appears in the discharged process and the specific capacity increases to 119.4 mA·h/g, which indicates that the reaction of Li ions extraction/insertion and electron transfer can well proceed at -20°C . It was reported that the surface reaction kinetics is slowed down with the drop of operation temperature [11]. The obtained results of AZO-LFP should be attributed to the surface treatment which increases the electrode kinetics at -20°C . Moreover, the improved electrode kinetics can also be beneficial to the rate performance of LiFePO₄, which is consistent with the result in Fig. 4.

Fig. 5 Initial discharge curves of Un-LFP and AZO-LFP powders tested at -20°C

4 Conclusions

AZO was successfully coated on the surface of LiFePO₄ synthesized by solid-state method. Discharge specific capacity of 100.9 mA·h/g can be retained by AZO-coated LiFePO₄ testing in the current density of 20C at room temperature, whereas the un-coated LiFePO₄ can only reach 72.0 mA·h/g even at 5C rate. At -20°C , the discharge specific capacities at 0.2C for un-coated LiFePO₄ and the coated one are 50.3 mA·h/g and 119.4 mA·h/g, respectively. The surface treatment of AZO-coating greatly improves the rate performance and low-temperature performance of LiFePO₄, which indicates that the AZO-LFP is a good candidate of cathode material for lithium power batteries.

References

- [1] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive electrode materials for rechargeable lithium batteries [J]. *J Electrochemical Society*, 1997, 144(4): 1188–1194.
- [2] YAMADA A, CHUNG S C, HINOKUMA K, YAMADA A, CHUNG S C, HINOKUMA K. Optimized LiFePO₄ for lithium battery cathodes [J]. *J Electrochem Soc A*, 2001, 148(3): 224–229.
- [3] PROSINI P P, PASQUALI M. Improved electrochemical performance of a LiFePO₄ based composite cathode [J]. *Electrochimica Acta*, 2001, 46: 3517–3523.
- [4] THACKERAY M. An unexpected conductor [J]. *Nat Mater*, 2002, 1: 81–82.
- [5] ZHOU X, WANG F, ZHU Y, LIU Z. Graphene modified LiFePO₄ cathode materials for high power lithium ion batteries [J]. *J Mater Chem*, 2011, 21(10): 3353–3358.
- [6] CHEN Zhao-yong, ZHU Wei, ZHU Hua-li, ZHANG Jian-li, LI Qi-feng. Electrochemical performances of LiFePO₄/C composites prepared by molten salt method [J]. *Transactions of Nonferrous Metals Society of China*, 2010, 20(5): 809–813.
- [7] WU Ling, WANG Zhi-xing, LI Xin-hai, LI Ling-jun, GUO Hua-jun, ZHENG Jun-chao, WANG Xiao-juan. Electrochemical performance of Ti⁴⁺-doped LiFePO₄ synthesized by co-precipitation and post-sintering method [J]. *Transactions of Nonferrous Metals Society of China*, 2010, 20(5): 814–818.
- [8] LU Jun-biao, TANG Zi-long, ZHANG Zhong-tai, JIN Yong-zhu. Influence of Mg ion doping on the battery properties of LiFePO₄/C [J]. *Acta Physico-Chimica Sinica*, 2005, 21(3): 319–323.
- [9] FISHER C A J, ISLAM M S. Surface structures and crystal morphologies of LiFePO₄: Relevance to electrochemical behaviour [J]. *J Mater Chem*, 2008, 18(11): 1209–1215.
- [10] LI Y D, ZHAO S X, NAN C W, LI B H. Electrochemical performance of SiO₂-coated LiFePO₄ cathode materials for lithium ion battery [J]. *J Alloys and Compounds*, 2011, 509(3): 957–960.
- [11] YAO J, WU F, QIU X, LI N, SU Y. Effect of CeO₂-coating on the electrochemical performances of LiFePO₄/C cathode material [J]. *Electrochimica Acta*, 2011, 56(16): 5587–5592.
- [12] CUI Y, ZHAO X. Enhanced electrochemical properties of LiFePO₄ cathode material by CuO and carbon co-coating [J]. *J Alloys and Compounds*, 2010, 490(1–2): 236–240.
- [13] CUI Y, ZHAO X, GUO R. High rate electrochemical performances of nanosized ZnO and carbon co-coated LiFePO₄ cathode [J]. *Materials Research Bulletin*, 2010, 45(7): 844–849.
- [14] WANG M, YANG Y, ZHANG Y. Synthesis of micro-nano hierarchical structured LiFePO₄/C composite with both superior high-rate performance and high tap density [J]. *Nanoscale*, 2011, 3(10): 4434–4439.
- [15] VERMA A, KHAN F, KUMAR D, KAR M, CHAKRAVARTY B C, SINGH S N, HUSAIN M. Sol-gel derived aluminum doped zinc oxide for application as anti-reflection coating in terrestrial silicon solar cells [J]. *Thin Solid Films*, 2010, 518(10): 2649–2653.
- [16] XU Z Q, DENG H, LI Y, HUANG C. Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films [J]. *J Materials Science in Semiconductor Processing*, 2006, 9(1–3): 132–135.

掺铝氧化锌包覆 LiFePO₄ 的合成与性能

汤昊¹, 谭龙², 许军¹

1. 复旦大学 材料系, 上海 200433;
2. 江苏恒益锂电池制造有限公司, 无锡 214028

摘要: 以简单的固相法合成了橄榄石结构 LiFePO₄, 并以导电掺铝氧化锌材料(AZO)对其表面进行包覆。充放电结果显示, 表面包覆大幅度改善了 LiFePO₄ 材料的倍率和低温性能。在 20C 高倍率条件下, AZO 包覆 LiFePO₄ 的放电比容量可达 100.9 mA·h/g; 在低温-20 °C 时进行 0.2C 充放电, 未包覆 LiFePO₄ 和 AZO 包覆 LiFePO₄ 的放电比容量分别为 50.3 mA·h/g 和 119.4 mA·h/g。经分析, 这可能是由于采用导电 AZO 包覆措施而增加了 LiFePO₄ 材料的电导率, 从而极大地提高了其比容量。另外, 导电 AZO 包覆措施还增加了 LiFePO₄ 材料的振实密度。这些结果表明 AZO 包覆 LiFePO₄ 材料是一种很好的适用于锂离子动力电池的正极材料。

关键词: 锂离子电池; LiFePO₄; 包覆; 正极材料; 掺铝氧化锌

(Edited by Hua YANG)