
 

 

 
Trans. Nonferrous Met. Soc. China 23(2013) 385−391 

 
Estimation of tensile strength of ductile iron friction welded joints using 

hybrid intelligent methods 
 

Radosław WINICZENKO, Robert SALAT, Michał AWTONIUK 
 

Department of Production Engineering, Warsaw University of Life Sciences, 
Nowoursynowska 164 St, 02-787 Warsaw, Poland 

 
Received 12 March 2012; accepted 31 May 2012 

                                                                                                  
 

Abstract: A hybrid intelligent method for evaluation of near optimal settings of friction welding process parameters of ductile iron 
was presented. The optimization of welding parameters was carried out in automatic cycle with the use of support vector regression 
(SVR), genetic algorithm (GA) and imperialist competitive algorithm (ICA). The method suggested was used to determine welding 
process parameters by which the desired tensile strength was obtained in the friction welding of ductile iron. The highest tensile 
strength (TS) of 256.93 MPa was obtained using SVR plus GA method for the following friction welding parameters: heating force 
40 kN, heating time 300 s and upsetting force 10.12 kN. The samples were welded by friction and subjected to the tensile strength 
test. The optimized values obtained by means of these hybrid techniques were compared with the experimental results. The 
application of hybrid intelligent methods allowed to increase the tensile strength joints from 211 to 258 MPa for the friction welder 
ZT−14 type. 
Key words: friction welding; tensile strength; support vector regression; genetic algorithm; imperialist competitive algorithm; ductile 
iron 
                                                                                                             
 
 
1 Introduction 
 

Ductile iron has been utilized as a structural 
material in many industries, such as, automotive, 
agriculture and pipe parts by virtue of its excellent 
strength and toughness. 

Generally, welding of ductile iron is necessary for 
founders and end-user to rectify casting defect and 
machining errors, to attach lugs or join the casting part 
with other materials. The poor weldability of ductile iron 
in fusion welding is due to its high carbon content which 
leads to the formation of carbides in the fusion zone and 
martensite in the fusion zone and heat affected zone 
adjacent to the fusion zone. Carbides and martensite are 
brittle phases which can cause deterioration of the 
mechanical properties and machinability at the interface 
of joining materials [1−3]. Several methods have been 
employed successfully to join ductile iron to ductile iron 
and other materials such as stainless steels and mild 
steels with acceptable properties in the weld and base 
metal. These methods include manual metal arc welding 
(MMAW), flux cored arc welding (FCAW), metal inert 
gas welding (MIG), gas tungsten arc welding (GTAW), 

gas welding (GW), laser welding (LW) and friction 
welding (FW) [4−7]. 

According to CROSSLAND [8], friction welding is 
an ideal method of joining materials which can be 
welded with difficulty. Thus, ductile iron can be welded 
and also joined to other materials such as steels with high 
alloy-content by friction welding. However, according to 
the American Welding Society (AWS) [9] and Paton 
Electric Welding Institute [10] the friction welding of 
ductile iron is not possible because graphite acts as a 
lubricant and prevents the generation of heat sufficient 
for joining. The structure of ductile iron is changed at the 
interface so that the mechanical properties of the parts 
which have been joined together are changed. Ductile 
iron-steel welded joints are particularly difficult to 
produce since carburization takes place on the 
low-carbon side with carbide formation. This can result 
in the formation of a brittle hard zone which cannot be 
eliminated by annealing. On the other hand, friction 
welding is a method of welding which has recently been 
used to connect grey cast iron with both the flake 
graphite and the nodular graphite. The aim of hitherto 
trials was to obtain a high mechanical tensile strength  
of joining during exploitation of a given element.  
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SHINODA et al [11] joined ductile iron by friction 
welding without any special treatment such as preheating 
and/or post heating treatment. Some authors have used 
the interlayers made of low-carbon steel or other 
materials in order to connect the ductile iron with the use 
of friction heat [12−16]. MICHIURA et al [17] studied 
the friction welding of ductile cast iron pipes. OGARA et 
al [18] examined the relationship between tensile 
strength characteristics and the macrostructure of joint in 
friction-welded ductile cast iron. OCHI et al [19] 
investigated the macrostructure and temperature 
distribution near the weld interface in the friction 
welding of FC250 grade cast iron. The highest tensile 
strengths in the solid joints and pipe joints were 317 MPa 
(79 % joint efficiency) and 381 MPa (95 % joint 
efficiency), respectively. SONG et al [20] investigated 
the strength distribution at the interface of 
rotary-friction-welded aluminium to nodular cast iron. 
Regardless of type of material, these technologies 
complicate welding process, increase its duration and 
make the technology more expensive. To predict the 
welding parameters accurately without consuming time, 
materials and labour effort, various methods are available 
and evolutionary algorithms are one of such methods. 

Many studies on viewing experiments, modeling 
and optimization for friction rotary welding (FRW) and 
friction stir welding (FSW) processes have been 
conducted. MURTI et al [21] developed statistical 
experimental design model in friction welding dissimilar 
materials. PAVENTHAN et al [22] used the response 
surface methodology to optimize the friction welding 
parameters for joining aluminium alloy and stainless 
steel. SATHIYA et al [23,24] optimized friction welding 
parameters for stainless steel using simulated annealing 
and evolutionary computational techniques. KUMARAN 
et al [25,26] optimized tube to tube plate using external 
tool by genetic algorithms and Taguchi method. 
CANYURT [27] estimated the welded joint strength 
using genetic algorithm approach. MERAN [28] 
predicted the optimized welding parameters for the 
joined brass plates using the genetic algorithms.  BABU 
et al [29] optimized FSW parameters to maximize the 
tensile strength of aluminium alloy joints. 
LAKASHMINARAYANAN et al [30] compared 
response surface methodology (RSM) with artificial 
neural networks (ANN) in predicting tensile strength of 
FSW aluminium alloy joints. They predicted the tensile 
strength and optimized process parameters for FSW 
magnesium. Prediction of tensile strength and 
optimization of process parameters for friction stir 
welded AZ31B magnesium were conducted in Ref. [31]. 
GOSH et al [32] optimized FSW parameters for 
dissimilar aluminum alloys. Optimizations of FSW of 
aluminum alloy by using genetically optimized neural 

network were reported in Ref. [33]. MALINOV et al [34] 
modeled the correlation between processing parameters 
and properties in titanium alloys using ANN. 

As it is mentioned above, the available knowledge 
on friction welding of ductile iron is focused on the 
structural and mechanical properties, phase formation 
and tensile strength evolution. These all investigations 
were carried out on trial and other basis to attain 
optimum welding conditions. No systematic study has 
been so far reported to optimize the friction welding 
parameters to attain the maximum tensile strength in 
ductile iron similar joints. Only other materials such as 
stainless steel, aluminum alloys, magnesium or titanium 
alloys were considered by many researchers. The main 
reason for this situation can be fact that ductile iron is 
generally considered a material difficult to weld. 
Therefore, in this work, an attempt was made to optimize 
the friction welding process parameters to attain the 
maximum tensile strength in similar joints of ductile iron 
using hybrid intelligent methods. 

The main objective of this study was to find the 
optimal welding combination that would maximize the 
tensile strength of ductile iron joints. The authors suggest 
the optimization of friction welding parameters to joining 
ductile iron with the use of unconventional hybrid 
methods (i.e. SVR plus GA and SVR plus ICA). 
 
2 Experimental 
 

The ductile iron of EN-GJS-400-15 type was 
investigated. The chemical composition of the specimen 
material is presented in Table 1. The iron castings were 
fabricated in the Founding Department of Mechanical 
Plant PZL-Wola (Warsaw, Poland) according to the 
following method: the inductive crucible furnace of 
capacity 3 t, special low-manganese crude iron 30 % + 
process scrap 15 % and the rest steel scrap, spheroidizing 
at temperature 1530 °C, a spheroidizer type 611A of 
granulation 1÷10, modification at temperature of 1450 
°C with the use of modifier ZL80ZN (0.4/2) of 
PECHINEY, putting the bottom of ladle with the use of a 
sinking device. Then, the samples of properly shaped 
fronts were welded in a friction welder ZT-14 at 
University of Technology and Life Sciences in 
Bydgoszcz (Poland). The heating force (HF) and 
upsetting force (UF) were in the range of 15−40 kN and 
10−60 kN, respectively. The spindle rotating speed was 
kept constant at 1125 r/min and the welding was 
performed under the specified friction upset distance. 

Because of the graphite appearance, the relatively 
large heating time (HT) 30−300 s was applied. Ductile 
iron specimens with a diameter of 20 mm and a length of 
95 mm were used as parent materials in this study. Shape 
and size of specimens before friction welding are shown 
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in Fig. 1. Similar ductile iron specimens were joined by 
friction welding process without any preheating. Friction 
joints were processed experimentally at randomly chosen 
parameter sets. Fourteen joints were processed for each 
parameter set. Tensile strength-related properties of the 
joints were tested and the average data were presented. 
Experimental values of friction processed joints are 
presented in Table 2. 

 
Table 1 Chemical composition of specimen (mass fraction, %) 

C Si Mn P S Cr 

3.78 0.6 0.15 0.05 0.01 0.03 

Ni Si C Mg Fe 

0.02 2.60 0.05 0.036 Bal. 

 

 
Fig. 1 Shape and size of specimens before friction welding 
(unit: mm) 
 
Table 2 Experimental values of friction processed joints 
Sample

No. 
Heating 
force/kN 

Heating 
time/s 

Upsetting 
force/kN 

Tensile 
strength/MPa

1 29.4 30 34.3 76 

2 29.4 60 34.3 163 

3 29.4 30 45 98.5 

4 8.2 120 32.8 116 

5 8.2 90 32.8 104 

6 24 60 45 102 

7 24 45 45 106 

8 24 45 24 133 

9 29 150 33 172 

10 33 150 33 190 

11 37 90 33 152 

12 24 150 24 208 

13 24 180 24 185 

14 24 240 24 211 

 
3 Methods 
 
3.1 Background in support vector regression (SVR) 

Basically, the SVR [35,36] is a linear machine of 
one output, working in the high dimensional feature 
space formed by the nonlinear mapping of the 
N-dimensional input vector into a K-dimensional feature 

space (K>N) through the use of function φ(x). The 
learning task is transformed to the minimization of the 
error function, defined through the so-called ε 
-insensitive loss function Lε(d, y(x)) 
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where ε is the assumed accuracy; d is the destination; x is 
the input vector; y(x) is the actual output of the network 
under excitation of x. 

The actual output signal of the SVR network is 
defined by 
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where w=[ω0, ω1, …, ωK]T is the weight vector and 
φ(x)=[φ0(x), φ1(x), …, φK(x)]T is the basis function vector. 

The learning task is defined as the minimization 
problem of the error function E: 
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at the following functional and boundary constraints: 
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where C and ε are user-specified constant; ξ and ξ* are 
slack variables; p is the number of learning data pairs (xi, 
di). 

The most important thing is the choice of 
coefficients ε and C. The constant ε determines the 
margin within which the error is neglected. The smaller 
its value, the more the support vectors will be found by 
the algorithm. The constant C is the weight, determining 
the tradeoff between the complexity of the network, 
characterized by the weight vector and the error of 
approximation, measured by the slack variables ξi(i=1, 
2, …, p). 
 
3.2 Background in genetic algorithm (GA) 

Genetic algorithms are computerized search and 
optimization algorithms based on the mechanics of 
natural genetics and natural selection. The general 
optimization procedure using a genetic algorithm is 
shown in Fig. 2. These algorithms encode a potential 
solution to a specific problem on simple chromosome 
string like data structure and apply specified operators to 
these structures so as to preserve critical information and 
to produce a new set of population with the purpose of  
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Fig. 2 Flowchart for genetic algorithm [37] 
 
generating strings which map to high function values 
[37−39]. 

The basic (classical) genetic algorithm, also called 
the elementary or simple genetic algorithm, comprises 
the following steps [37]: 

Step 1: Initiation which is the selection of the initial 
population of chromosomes; 

Step 2: Evaluation of the fitness of chromosomes in 
the population; 

Step 3: Checking the stopping criterion; 
Step 4: Selection of chromosomes; 
Step 5: Using genetic operators; 
Step 6: Creating a new population; 
Step 7: Presentation of the “best” chromosome. 

 
3.3 Background in imperialist competitive algorithm 

(ICA) 
Imperialist competitive algorithm (ICA) is one of 

the evolutionary optimization methods. It was first 
presented in 2007 [40]. In the most cases, optimization 
algorithm is a kind of computer simulation of processes 
observed in the nature but ICA presents different points 
of view. It is algorithm motivated by the socio-politically 
mechanism. 

In this case, solutions of optimization problem are 
called countries. Each country can play a role of colony 
or imperialist. The power of a country is represented by 
the value of cost function defined by the programmer. 
The strongest countries become imperialists and the 
others are considered as their colonies. Both of 
imperialist and its colonies create the empire. Total 
power of the empire is dependent on power of imperialist 
and all its colonies. It can be calculated by the following 
equation: 

 
Tn=Cn+ζcn                                                      (5)  
where Tn is the total cost of the nth empire; Cn is the cost 
of the nth imperialist; cn is the mean cost of all colony of 
the nth empire; ζ is a number from range (0,1). 

The essential of the ICA is competition of the 
empires. As a result of this competition, the weakest 
empires collapse and the most powerful ones take 
possession of their colonies. Another result of 
competition is changing position of countries by means 
of moving colonies toward their imperialist, changing 
coordinates of imperialist and eliminating the powerless 
empires. The working of algorithm is presented by the 
flowchart shown in Fig. 3. 
 

 
Fig. 3 Flowchart of imperialist competitive algorithm [40] 
 
4 Problem formulation 
 

Conventional friction welding is divided into two 
basic phases: the friction phase and the upsetting phase. 
During the first phase, on the boundary of elements 
subjected to welding, heat is released during mutual 
friction. In the second phase (called the upsetting phase), 
the heated-up butting faces of both elements-bond and 
cool together and a durable connection are created [41]. 
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To produce a good quality joint it is important to set up 
proper welding process parameters. Welding process is a 
multi-input and multi-output process in which joints are 
closely related to welding parameters. Therefore, 
identifying the suitable combinations of process input 
parameters to produce the desired output many 
experiments have to be carried out and this makes the 
process time-consuming and costly. 

We suggest using two methods, namely SVR plus 
GA and SVR plus ICA which were compared to obtain 
the more accurate results (i.e., the maximum tensile 
strength) and friction welding parameters of ductile iron. 

The general structure of the SVR used for hybrid 
methods is shown in Fig. 4. 
 

 
Fig. 4 Block diagram of input vector and output of SVR 
 

SVR was used because it is a proper method for 
regression problems of good generalization performance. 
In distinction to the classical neural networks, the 
formulation of learning problem of SVR leads to the 
quadratic programming with linear constraints whose 
solution achieves global minimum. Using SVR a 
mathematical model of welding phenomenon hidden in 
the form of weights can be easily written , whereas both 
GA and ICA are good tools for optimization. It seems 
reasonable to use SVR in connection with both GA and 
ICA as hybrid methods. Block diagram of the method 
used is shown in Fig. 5. 
 

 
Fig. 5 Block diagram for general model usage with 
optimization algorithms 
 

The algorithm is fully automatic. SVR network is 
learning the data shown in Table 2. Input data are heating 
force (HF), heating time (HT), and upsetting force (UF); 

and the tensile strength (TS) was taken as output data. 
SVR generates a mathematical model describing the 
complex relationship between the input and output 
parameters. The mathematical model is written as a 
fitness function for both GA and ICA. GA and ICA 
optimize the fitness function and calculate the input 
parameters for which the fitness function reaches its 
maximum tensile strength. These optimal parameters are 
given back to the SVR and the test mode theoretical 
maximum of tensile strength is calculated. Next, the 
experimental studies of friction welding of ductile iron 
with the parameters obtained from GA and ICA are 
conducted again. Finally, the results are compared with 
those of hybrid methods. 
 
5 Parameters of learning 
 
5.1 SVR 

The learning process of the SVR network has been 
performed with the use of SMO-type algorithm 
implemented in toolbox LIBSVM [42]. We have used the 
Gaussian radial basis function as the kernel function 

)||||exp(),( 2
iik xxxx −−= γ , where γ is the kernel 

parameter. The Gaussian radial basis function satisfied 
by SVR kernel described as the relation 
k(x,xi)=φT(x)φ(xi). The optimal value of the ε has been 
determined after a series of experiments and assumed as 
0.001. The parameters C and γ used in experiments were 
7×107 and 2×10−6, respectively. 
 
5.2 GA 

The genetic algorithm parameters were as follows: 
Number of generations was 30, population size was 80, 
type of selection was roulette wheel probability of 
crossover and mutations were 0.77 and 0.0077, 
respectively. 
 
5.3 ICA 

The imperialist competitive algorithm parameters 
were as follows: the number of initial countries was 80, 
the number of initial imperialists was 8, the number of 
decades was 30 and parameter ζ was 0.02. 
 
6 Results and discussion 
 

Most of the researchers use traditional optimization 
techniques for solving engineering problems. The 
traditional methods of optimization do not perform well 
over a broad spectrum of domains. Traditional 
techniques are not efficient. These algorithms are not 
robust. Conventional techniques such as linear 
programming, dynamic programming and branch or 
bound techniques are sometimes insufficient to solve 
these problems and they are inclined to obtain a local 



Radosław WINICZENKO, et al/Trans. Nonferrous Met. Soc. China 23(2013) 385−391 

 

390 

optimal solution [24]. Therefore, authors proposed two 
hybrid methods, consisting of support vector regression 
and genetic algorithm (SVR+GA) and support vector 
regression and imperialist competitive algorithm 
(SVR+ICA) as a new approach to the friction welding of 
ductile iron. 

The experiments were conducted with a random 
change of parameters within the range specified in 
section 2. The processed joints were subjected to tensile 
testing in order to evaluate the strength-related aspects of 
joints. The process parameters for the joints and the 
associated strength are listed in Table 2. These 
experimental input and output values were utilized to 
train the general SVR model. Learning set was equal  to 
85%, test set contained 15 % of the data. Relative 
learning error and relative test error were 5.8% and 2.6%, 
respectively. Both SVR and evolutionary methods have 
been implemented in Matlab R2010a. The welding 
optimized parameters (i.e. HF, HT, UF) by both GA and 
ICA methods are given in section 2. The program is 
constructed in such a way that the trained SVR takes 
random input parameters from the optimization GA or 
ICA algorithms and the output of SVR is again presented 
to algorithm for optimization. The results obtained from 
the optimization algorithms are presented in Table 3. 
 
Table 3 Comparison between theoretical and experimental 
input and output values 

Input parameter  Output 
parameter

Method 
Heating 
force/kN 

Heating 
time/s 

Upsetting 
force/kN  Tensile 

strength/MPa

Theoretically 
optimized 

parameters by 
SVR+GA 

40 300 10.12  256.93 

Theoretically 
optimized 

parameters by 
SVR+ICA 

40 300 9.33  255.02 

Experimentally 
used parameters 40 300 10  258 

 
Table 3 presents the theoretical and experimental 

input and output parameters of the friction-processed 
similar ductile iron joints. The parameters are optimized 
for the maximized tensile strength. The optimized 
parameters obtained through GA, were used to process of 
the friction welding. The highest tensile strength of 
connection, 256.93 MPa, was obtained using SVR plus 
GA method for the following friction welding  
parameters: HF=40 kN, HT=300 s and UF=10.12 kN. 
The highest tensile strength of connection was found for 
samples welded with the longest heating time, the 
highest heating force and the smallest upsetting force. 

The very close agreement between theoretical and 
experimental data (less than 1% difference) confirms the 
potential applicability of these evolutionary 
computational techniques for the industrial problems. It 
is noteworthy that for these friction-processed joints, 
among the optimization techniques used, GA gives the 
better results than ICA in terms of the maximized tensile 
strength. 
 
7 Conclusions 
 

1) The application of hybrid intelligent methods 
allowed to increase the tensile strength joints from 211 
MPa to 258 MPa for the friction welder ZT−14 type. 

2) The best theoretical tensile strength 256.93 MPa 
was achieved by SVR+GA method with following 
parameters: HF=40 kN, HT=300 s and UF=10.12 kN. 
The results are higher than those achieved by SVR+ICA 
method. 

3) The coherence between the theoretically 
optimized and the experimentally obtained values of the 
process parameters ensures the high potential of applying 
SVR+GA or SVR+ICA evolutionary methods to the 
friction welding process. 
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摘  要：采用混合智能方法评价球墨铸铁的最佳摩擦焊接工艺参数。在自动循环中使用支持向量回归(SVR)、遗

传算法(GA)和帝国竞争算法(ICA)优化焊接工艺参数。该方法被用来确定焊接工艺参数, 得到了理想的球墨铸铁摩

擦焊接抗拉强度。在加热力 40 kN，加热时间 300 s，顶锻压力 10.12 kN 条件下，使用 SVR 加上 GA 方法得到了

最高抗拉强度为 256.93 MPa。将摩擦焊接样品进行拉伸强度测试，并比较了采用混合智能方法得到的优化值与实

验结果。结果表明，混合智能方法可以使 ZT−14 型摩擦焊机拉伸强度从 211 MPa 增加到 258 MPa。 
关键词：摩擦焊接；抗拉强度；支持向量回归；遗传算法；经验竞争算法；球磨铸铁 
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