文章编号: 1004-0609(2013)01-0154-08

铝电解 NiFe₂O₄ 基惰性阳极材料纤维增强体的选择

华中胜1,姚广春2,龙秀丽2,王海川1,赵 卓1

(1. 安徽工业大学 冶金与资源学院,马鞍山 243002; 2. 东北大学 材料与冶金学院, 沈阳 110819)

摘 要:以 NiO 和 Fe₂O₃ 为原料采用固相烧结法合成 NiFe₂O₄ 尖晶石,通过向其中添加短纤维制备纤维/NiFe₂O₄ 惰性阳极材料。为选择适合于 NiFe₂O₄ 基惰性阳极材料的纤维增强体,对几种纤维在 NiFe₂O₄ 基体中的高温稳定 性进行考察。结果表明,高温下碳纤维、玻璃纤维、氧化铝纤维和碳化硅纤维与 NiFe₂O₄基体是热力学不相容的; 1 200 ℃时镀镍碳纤维和镍纤维不能在基体中稳定存在; 1 400 ℃时 ZrO₂₍₁与 NiFe₂O₄基体具有良好的物理和化学 相容性,添加 3% ZrO₂₍₁ (质量分数)阳极试样的力学性能得到明显改善。因此,ZrO₂₍₁可作为 NiFe₂O₄基惰性阳极 的纤维增强体。

关键词: 铝电解; NiFe₂O₄; 纤维; 惰性阳极; 稳定性; 强韧化 中图分类号: TF7821 文献标志码: A

Selection of fiber reinforcement for NiFe₂O₄-based inert anode materials in aluminum electrolysis

HUA Zhong-sheng¹, YAO Guang-chun², LONG Xiu-li², WANG Hai-chuan¹, ZHAO Zhuo¹

(1. School of Metallurgy and Resources, Anhui University of Technology, Maanshan 243002, China;

2. School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China)

Abstract: NiFe₂O₄ spinel was synthesized via solid-state sintering technology using NiO and Fe₂O₃ as the raw materials, and fiber/NiFe₂O₄ inert anode materials were prepared by adding short fiber into NiFe₂O₄. The high temperature stability of some fibers in NiFe₂O₄ matrix was investigated to select the appropriate fiber reinforcement for NiFe₂O₄-based inert anode materials. The results indicate that carbon fiber, glass fiber, alumina fiber and silicon carbide fiber are thermodynamically incompatible with the NiFe₂O₄ matrix, also the nickel-coated carbon fiber and nickel fiber cannot stably exist in the matrix at 1 200 °C, while $ZrO_{2(f)}$ has favorable physical and chemical compatibility with the NiFe₂O₄ matrix at 1 400 °C. The mechanical properties of the anodes samples are improved significantly by adding 3% $ZrO_{2(f)}$ (mass fraction). Therefore, $ZrO_{2(f)}$ can be used as the fiber reinforcement for NiFe₂O₄-based inert anode. **Key words:** aluminum electrolysis; NiFe₂O₄; fiber; inert anode; stability; strengthening and toughening

100 多年来, 铝冶金行业一直采用霍尔-赫鲁特法 进行铝电解生产,其许多工艺参数也逐步得到了优化, 但使用碳素阳极的基本工艺没有改变。使用碳阳极的 弊端如下: 1) 在制作碳阳极的过程中会产生大量沥青 烟气, 而电解过程中阳极析出的氧气与碳阳极发生反 应, 生成大量的 CO₂和 CO 气体; 同时, 阳极碳在发 生阳极反应时还会与电解液中的氟反应生成 CF₄ 和 C₂F₆气体。这些气体排入大气中,对环境造成了严重 的污染。2) 大量优质阳极碳材料在铝电解过程中不断 被消耗,更换阳极增加了劳动强度,并导致电解生产 的不稳定。这些都大大增加了铝电解的投资和生产成 本。惰性阳极因能解决上述问题而成为铝业界和材料 界的研究热点^[1-4]。

NiFe₂O₄ 尖晶石材料在含有溶解铝的氟化物熔体

基金项目:国家自然科学基金重点项目(50834001);国家自然科学基金资助项目(51204002)

收稿日期: 2012-01-06; 修订日期: 2012-03-20

通信作者:华中胜,博士;电话: 18225551375; E-mail: huazs83@yahoo.com.cn

中溶解度很小,具有良好的化学惰性,且不易发生阳 极溶解,能经受电化学氧化及抵抗阳极析出新生态氧 的作用,有优良的电化学稳定性。同时,NiFe₂O₄ 尖 晶石还具有陶瓷材料的耐高温、耐磨损、耐腐蚀和热 稳定性好等优点。因此, NiFe₂O₄ 尖晶石已成为制备 惰性阳极的首选基体材料^[5-7]。但陶瓷的韧性和抗热 震性较差,影响了 NiFe₂O₄ 尖晶石作为铝电解阳极的 使用寿命和铝液的质量,因而其应用受到了极大限 制。通常,向基体中添加纤维是改善陶瓷脆性、强韧 化陶瓷基复合材料的一种有效途径[8-10]。作为铝电解 用惰性阳极的增强材料,不仅要具有良好的力学性能 和耐熔盐腐蚀性能,而且要求高温(960℃左右)下能在 NiFe₂O₄ 尖晶石基体中稳定存在,与基体具有较好的 物理和化学相容性。因此,选择能满足上述要求的纤 维增强体,是进行纤维/NiFe₂O₄尖晶石复合阳极材料 研究的首要工作。

1 实验

1.1 镀镍碳纤维的制备

碳纤维表面金属化方法主要有镀 Cu、Ni、Zn 及 其合金,其中以纯镍镀层的熔点最高,抗氧化性最好。 通常,采用化学镀镍得到的大多是熔点较低的 Ni-P 合 金,而电镀能得到熔点较高的单质 Ni。因此,本文作 者对碳纤维进行电镀镍处理,尝试以镀镍纤维作为增 韧材料来提高尖晶石阳极的韧性。碳纤维表面电镀镍 前经空气氧化除胶和硝酸粗化氧化处理,以提高其表 面活性,增强镀层与纤维间的结合力。

将长度一定的一束碳纤维平行置于两块镍板之 间,碳纤维两端与直流电源负极相连,两镍板与电源 正极相连,搅动镀液待纤维充分分散后,通电进行电 镀。采用瓦特型镀镍电解液^[11],其组成如下:250 g/L NiSO4·6H₂O、60 g/L NiCl₂·6H₂O、40 g/L H₃BO₃、0.1 g/L CH₃(CH₂)₁₁·SO₄Na、1.0 g/L C₇H₅NO₃S、0.5 g/L C₄H₆O₂; 工艺条件如下: pH 4.0~4.5、温度 50 ℃、阴极电流密 度 0.38 A/dm²、电镀时间 6 min。在此条件下获得的镍 镀层表面平整,厚度均匀,且与纤维结合紧密,如图 1 所示。

1.2 纤维/NiFe2O4 阳极材料的合成

以工业级 NiO 和分析纯 Fe₂O₃ 粉末为原料,两者 按照质量比为 42.09:57.91 进行配料,经湿法球磨混 料、烘干和研磨造粒后于 1 000 ℃下进行高温固相合 成反应,生成 NiFe₂O₄ 尖晶石。将合成的尖晶石基料

图 1 镀镍碳纤维及其断面的 SEM 像 Fig. 1 SEM images of nickel coated-fibers (a) and their crosssections (b)

破碎筛分,进行粒度级配后,加入适量去离子水调配 成一定黏度的浆料;搅拌作用下加入短切纤维(5~8 mm),继续搅拌3h使纤维均匀地分布于浆料中;浆 料于100℃烘干后,向混有纤维的粉料中加入质量分 数为4%的聚乙烯醇粘结剂,冷压成型后烧结,制得 纤维/NiFe₂O₄复合阳极材料。

1.3 纤维/NiFe2O4复合阳极材料的测试及表征

采用阿基米德排水法测定试样的体积密度和气孔 率;采用三点法测量抗弯强度,采用单边切口梁 (SENB)法测量断裂韧性,采用一次热震后的抗弯 强度保持率表征抗热震性,所用实验仪器均为美国 INSTRON4206-006 型电子机械实验机;采用四点法 测量样品的高温电导率;使用日本理学 D/max2RB 型 X 射线衍射仪进行物相分析;使用日本 SS-550 型扫 描电镜(SEM)观察试样断口形貌,采用 EDX 进行元素 分析。

2 结果与讨论

2.1 常用纤维与 NiO 和 Fe₂O₃反应的热力学分析 碳纤维具有强度高、模量高、密度低、耐高温、

线胀系数小及热导率高等优点,是金属、陶瓷和聚合物等最常用的强韧化材料。它的不足之处是高温抗氧化性差,高温时与大多数金属氧化物发生反应。表 1 所列为 600~1 600 K 时 C 与基体中的 NiO 和 Fe₂O₃反应吉布斯自由能的变化。

表 1 600~1 600 K 时 C 与 NiO 和 Fe₂O₃ 的反应及其吉布斯 自由能变化

Table 1 Reactions between C and NiO, Fe_2O_3 and their Gibbsfree energies variation at 600–1 600 K

Ponotion	$\Delta G_T / (\text{kJ·mol}^{-1})$				
Reaction	600 K	800 K	1 000 K		
C+2NiO=2Ni+CO ₂	-25.35	-60.79	-95.54		
3C+2Fe ₂ O ₃ =4Fe+3CO ₂	140.03	36.41	-63.54		
Peaction	$\Delta G_T / (\text{kJ·mol}^{-1})$				
Reaction	1 200 K	1 400 K	1 600 K		
C+2NiO=2Ni+CO ₂	-129.74	-163.50	-196.92		

从表1可以看出,热力学上C与NiO和Fe₂O₃的反应在1000K时即可发生。碳纤维/NiFe₂O₄尖晶石复合阳极材料的烧结在1000℃以上的氧化性气氛中进行,图2所示为经1100℃烧结后碳纤维/NiFe₂O₄阳极试样断面的SEM像。从图2的孔洞可知,碳纤维已被氧化或与基体发生反应而消失。碳纤维消失后留下的大量孔洞使得阳极材料的致密度急剧下降,力学性能和耐蚀性降低,无法作为铝电解的阳极材料。实验证明,在此条件下碳纤维不能在基体中稳定存在。因此,若通过添加碳纤维来改变阳极材料的韧性,必须对碳纤维进行表面处理以提高其在NiFe₂O₄尖晶石

图 2 经 1 100 ℃烧结后碳纤维/NiFe₂O₄ 阳极试样断面的 SEM 像

Fig. 2 SEM image of cross-section of carbon fiber/NiFe $_2O_4$ anode sample after calcined at 1 100 °C

基体中的稳定性。

玻璃纤维的主要成分为 SiO₂ 和 Al₂O₃,它们与基 体材料中的 NiO 反应的吉布斯自由能变化如表 2 所 列。从表 2 可以看出,玻璃纤维在 NiFe₂O₄尖晶石中 的热力学稳定性不高。玻璃纤维的软化温度均较低; 且受热后玻璃纤维的微裂纹增加,使纤维的强度降低。 而氧化铝纤维在高温下会发生晶型转变和晶粒粗化, 导致其强度下降,由表 2 可知,氧化铝纤维也不适合 作为 NiFe₂O₄尖晶石的增韧材料。

与碳纤维和氧化物纤维等其他高性能纤维相比, SiC 纤维具有强度高、硬度高、热膨胀系数小和密度 低的特点,而且其导电性良好。但是,SiC 纤维在空 气中的热稳定性不高,而且易与 NiFe₂O₄ 尖晶石基体 中的组元发生反应^[12]。表 3 所列为不同温度下 SiC 与 基体中 Fe₂O₃ 和 NiO 反应的吉布斯自由能变化。

上述结果表明,高温时玻璃纤维、氧化铝纤维与

表 2	600~1	600 K	时玻璃纤维的相关反应及其吉布斯自由能变化
-----	-------	-------	----------------------

Table 2 Relative reactions of glass fiber and their Gibbs free energies variation at 600-1 600 K

Pagation	$\Delta G_T / (\text{kJ·mol}^{-1})$					
Reaction	600 K	800 K	1 000 K	1 200 K	1 400 K	1 600 K
SiO ₂ +2NiO=2NiO·SiO ₂	-8.67	-6.78	-4.92	-3.4	-2.3	-1.69
NiO+Al ₂ O ₃ =NiO·Al ₂ O ₃	-11.45	-13.28	-15.08	-16.86	-18.64	-20.43

表 3 600~1600 K SiC 与基体中的 Fe₂O₃ 和 NiO 的反应及其吉布斯自由能变化

Table 3 Reactions between SiC and Fe₂O₃ and NiO and their Gibbs free energies variation at 600–1 600 K

Deastion	ΔG_{T} (kJ·mol ⁻¹)					
Reaction	600 K	800 K	1 000 K	1 200 K	1 400 K	1 600 K
SiC+2O ₂ =SiO ₂ +CO ₂	-1 128.22	-1 094.33	-1 060.99	-1 027.90	-994.99	-962.26
4Fe ₂ O ₃ +SiC=SiO ₂ +CO ₂ +8FeO	-330.86	-402.53	-469.33	-533.04	-596.57	-660.26
SiO ₂ +2NiO=2NiO·SiO ₂	-8.67	-6.78	-4.92	-3.40	-2.30	-1.69

SiC 纤维易于与基体发生反应而形成过强的界面结合,使纤维丧失补强增韧作用。因此,它们不适合作为 NiFe₂O₄尖晶石的增韧材料。

2.2 镀镍碳纤维与 NiFe2O4 尖晶石复合材料的微观形貌

图 3 所示为添加 5%(质量分数)镀镍纤维的复合材 料经 1 200 ℃烧结后的微观形貌。从图 3 可以看出, 碳纤维经镀镍处理后仍不能在 NiFe2O4 尖晶石中稳定 存在,纤维消失后留下了大量的气孔,材料的密度由 4.59 g/cm³降至 3.86 g/cm³,气孔增多直接导致强度的 大幅下降。纤维消失后,其表面的 Ni 镀层在基体中仍 以纤维状存在(见图 3(a));同时,从材料的断面(见图 3(b))来看,Ni 镀层基本保持着纤维截面的环形外观, 厚度均匀,且其环形内径与纤维直径接近。这表明 1 200 ℃烧结时 Ni 镀层没有熔化,纤维的消失不是由 镀层熔化后纤维裸露与基体接触而发生反应引起的。

纤维消失可能由以下 3 个方面引起: 1) Ni 与纤维 的热膨胀系数差异。在室温到 900 ℃之间,纤维的径 向热膨胀系数约为 8×10⁻⁶ ℃⁻¹,而其轴向热膨胀系数 为(-1.2~0)×10⁻⁶ ℃⁻¹,远低于 Ni 的热膨胀系数 1.3×10⁻⁵ ℃⁻¹。由于 Ni 和纤维的热膨胀系数相差较 大,复合材料在烧结和冷却过程中,Ni 镀层和纤维间 势必产生热应力,该应力可能破坏 Ni 与纤维的紧密结 合,使它们之间形成一定的缝隙,甚至使镀层破裂。

图 3 镀镍纤维/NiFe₂O₄复合材料的 SEM 像 Fig. 3 SEM images of nickel-coated fibers/NiFe₂O₄ composites: (a) Lower magnification; (b) Higher magnification

扩散进去的氧气在高温下极易与纤维发生反应,纤维 因氧化而消失。2) Ni 镀层在烧结前遭到破坏。镀镍纤 维在搅拌分散过程中,部分纤维表面的镀层不可避免 地会受到一定程度的破坏而发生开裂或剥落,同时在 压制成型的过程中镀层也极有可能发生破裂。镀层遭 受破坏后,纤维失去保护,高温下只要与基体接触就 会发生反应而消失。3) 剪短后的镀镍纤维两端的断 面没有 Ni 镀层的保护,相比其他地方更容易与氧气 和基体接触发生反应。

电镀得到的镍镀层纯度高,其熔点接近单质 Ni 的熔点,但是不能在长度太短的纤维上实施。化学镀 虽能对短切纤维进行镀镍,但它只能得到熔点较低的 Ni 合金镀层,在高温下易熔化而起不到保护纤维的作 用。此外,在合成复合材料的过程中,碳纤维表面的 镀层仍不可避免地受到一定程度的破坏。这些因素都 限制了碳纤维作为增韧材料在 NiFe₂O₄中的应用。因 此,以碳纤维对 NiFe₂O₄尖晶石材料进行增韧,关键 在于如何对碳纤维进行保护,使其在高温氧化性气氛 下能在 NiFe₂O₄中稳定存在,这方面有待于更深入的 研究。

2.3 镍纤维与 NiFe₂O₄ 复合材料的微观形貌及性能

镍纤维(见图 4)具有良好的导电性、耐蚀性以及高强度、高弹性模量等优点,是陶瓷材料的良好增强增韧材料。相比于其他金属,当 NiFe₂O₄基惰性阳极中

图 4 镍纤维及其微观形貌

Fig. 4 Nickel fibers (a) and their micro-morphologies (b)

添加 Ni 后其综合性能最佳^[13]。所以,本文作者尝试 以镍纤维作为 NiFe₂O₄尖晶石的增韧材料。

将镍纤维剪成长度约为 5 mm 的短纤维(Ni_f),按 照质量分数 5%加入到 NiFe₂O₄尖晶石基料中,在 160 MPa下压制成型,然后于 1 200 ℃烧结 6 h 合成复合 阳极试样。其各项性能与空白样的比较见表 4。从表 4 可以看出,添加镍纤维后材料的密度和电导率有所提 高,但抗折强度、抗热震性和韧性等力学性能下降。

表4 阳极试样添加 Nif 前后的性能

Table 4 Properties of samples with and without M_f					
Mass fraction Ni _f %	Density/(g·cm ⁻³)	Bending strength/MPa			
0	3.97	36.1			
5	4.18	29.7			
Conductivity/ (S·cm ⁻¹)	Strength retention/%	Fracture toughness/(MPa \cdot m ^{1/2})			
0.46	46.8	3.32			
15.32	41.3	3.16			

图 5 所示为 Ni_f/NiFe₂O₄ 复合材料的微观结构。由 图 5 可以看出,阳极材料中不存在纤维状的金属 Ni。 经 1 200 ℃烧结 6 h 后,复合材料中的 Ni_f 已经熔化成 液态 Ni,填充于 NiFe₂O₄ 尖晶石颗粒间,并促使局部 晶粒长大。由于 Ni 的密度高于尖晶石的密度,加上液 态 Ni 的填充作用使颗粒间孔隙减少,所以,添加 Ni_f 后材料的密度提高。电导率提高的原因如下: 1)材料 的电导率与材料的密度有关,气孔使材料的导电相不 连通,阻碍导电粒子的运动,从而降低材料的导电相。 密度提高后,材料的导电性增强。2)金属 Ni 的导电 性明显优于尖晶石的导电性,熔化的 Ni_f填充在颗粒 间的孔隙中,部分连接到一起形成网状通道,显著提 高了材料的导电性。

图 5 Ni_f/NiFe₂O₄ 复合材料的微观结构 Fig. 5 Microstructure of Ni_f/NiFe₂O₄ composites

复合材料在烧结过程中,基料的晶粒大小一般在 2 μm 左右,而 Ni_f熔化后使部分尖晶石颗粒异常长大 到 5 μm 以上。陶瓷材料的强度与晶粒尺寸的关系与 金属有类似规律,也符合 Hall-Petch 关系式:

$$\sigma_{\rm f} = \sigma_0 + kd^{-1/2} \tag{1}$$

式中: *σ*_f为陶瓷材料的强度; *σ*₀为无限大单晶的强度; *k* 为系数; *d* 为晶粒直径。

从式(1)可以看出,陶瓷材料的室温强度随晶粒直 径的增大而减小。晶粒变大且大小不均匀是陶瓷材料 韧性等力学性能下降的微观表现^[14]。复合材料抗热震 性下降可能是由 Ni_f与尖晶石的热膨胀系数差异引起 的。急热急冷后材料中容易产生孔隙,孔隙的形成降 低了复合材料热震后的强度,即抗热震性下降。

在 Ni_f的制备过程中不可避免地会引入少量其他的金属,致使纤维在温度未达到 Ni 的熔点时就会熔化。从 Ni_f的热重分析(见图 6)中可以看出,在空气中加热时纤维表面形成的致密氧化膜能阻止其继续被氧化,质量增加很少,具有很好的抗氧化性;但在 1 119.5 ℃时存在一个明显的吸热峰,说明纤维在此温度下已经熔化。对实验中所用 Ni_f进行 EDX 分析(见图 7)发现,除 Ni 元素外,纤维中还含有 4.4%(质量分数)的Cu 元素和 0.5%的 Fe 元素。Cu 和 Fe 两种合金元素的存在使 Ni_f 的熔点大大降低。因此,Ni_f 不适合作为NiFe₂O₄尖晶石惰性阳极材料的纤维增强体。

2.4 氧化锆纤维与 NiFe₂O₄ 复合材料的微观形貌及性能

Y₂O₃稳定的氧化锆纤维(ZrO_{2(f)})有利于 ZrO₂形成 四方晶型,改善纤维本身的韧性,其基本性能如表 5 所列。EDX 分析结果表明,纤维的纯度较高,组成元

图 6 Ni_f的 DSC-TG 曲线

Fig. 6 DSC–TG curves of $Ni_{\rm f}$

图7 Nif的 EDX 分析结果

Fig. 7 EDX analysis result of Ni_f

表5 ZrO_{2(f)}的基本性能

Table 5 Basic properties of ZrO_{2(f)}

Parameter	Value
Density/($g \cdot cm^{-3}$)	4.45
Diameter/µm	3-8
Strength/GPa	2.1
Modulus/GPa	340
Melting point/°C	2 677
Thermal expansion coefficient/ $^{\circ}C^{-1}$	1.3×10^{-5}

素为 Zr、Y 和 O, 其中 Y₂O₃ 的摩尔分数为 6.66%。物 相分析(XRD, 见图 8)结果表明, 纤维由四方晶型 ZrO₂ 和六方晶型的 Y₂O₃ 组成。

图 9 所示为 ZrO_{2(f)}/NiFe₂O₄ 复合材料粉体的 DSC-TG 曲线。由图 9 可以看出,该体系具有很好的 热稳定性,从室温加热至 1 400 ℃质量仅减少了 2.28%。造成质量微小变化的原因如下: 1) 样品表面 吸附的水分随温度升高而排出; 2) 空气中的氧气在样 品表面发生吸附和解吸作用; 3) 样品中一些微量杂质 被烧掉。同时,DSC 曲线比较平滑,没有突起的尖锋, 由此可知 ZrO_{2(f)}与基体材料 NiFe₂O₄在低于 1 400 ℃时 热力学是相容的,没有新的反应发生。在 1 400 ℃烧 结 6 h 后制备的 ZrO_{2(f)}/NiFe₂O₄ 复合材料的物相组成 (XRD 谱)如图 10 所示。由图 10 可知,除基体中含有 的 NiFe₂O₄和 NiO 两相外,只发现四方相 ZrO₂和六方 相 Y₂O₃,没有新相出现,而 ZrO₂和 Y₂O₃ 是纤维的主 要组成相。这进一步证明 ZrO_{2(f)}能在基体中稳定存在, 不会与基体材料发生反应。

界面结合状态是影响复合材料性能的重要因素之 一,而界面结合强度由两部分组成^[15]:一是纤维和基

图 8 ZrO_{2(f}的 XRD 谱 Fig. 8 XRD pattern of ZrO_{2(f)}

图 9 ZrO_{2(f)}/NiFe₂O₄复合材料的 DSC-TG 曲线 Fig. 9 DSC-TG curves of ZrO_{2(f)}/NiFe₂O₄ composites

图 10 ZrO_{2(f)}/NiFe₂O₄复合材料的 XRD 谱 Fig. 10 XRD pattern of ZrO_{2(f)}/NiFe₂O₄ composites

体的热膨胀系数差异而引起的内应力; 二是复合材料 在烧结过程中所形成的中间层对纤维和基体的结合

力。在 0~1 000 ℃温度范围内,四方相 ZrO₂₍₁₎的热膨 胀系数 a_f为 1.3×10⁻⁵ ℃⁻¹,基体 NiFe₂O₄的热膨胀系 数 a_m约为 1.08×10⁻⁵ ℃⁻¹。纤维的热膨胀系数高于基 体的热膨胀系数,复合材料在烧结后的冷却过程中, 在界面上会产生残余应力。残余应力正比于 $\Delta \alpha \Delta T$, 其中 $\Delta \alpha = \alpha_{\rm f} - \alpha_{\rm m}$, ΔT 为烧结温度与当前温度的差值。 纤维沿轴向受到拉应力,而基体受到压应力,当复合 材料承受沿纤维轴向的拉伸载荷时,纤维产生的预拉 应力成为载荷的主要承担者,有利于复合材料强度和 韧性的提高。图 11 所示为 ZrO_{2(f)}/NiFe₂O₄ 复合材料断 口的 SEM 像。从图 11 可以看出,在纤维与基体的界 面处,未出现由反应而形成的中间层;同时,有少量 NiFe2O4 尖晶石颗粒在烧结过程与 ZrO2(1)发生了互扩 散而进入纤维与其结合。ZrO2(t)基体间未形成过强的 界面结合力,保证了 ZrO2(f)/NiFe2O4 阳极试样在受到 外力作用时,载荷从基体传递到纤维后纤维被拔出, 从而实现对阳极试样的强韧化。添加 3%ZrO_{2(f)}(质量 分数)后,阳极试样的力学性能得到了显著提高,如表 6 所列。上述结果表明,高温时 ZrO₂₍₁₎具有较高的稳 定性, 且与 NiFe₂O₄ 尖晶石具有良好的物理和化学相 容性,可作为 NiFe₂O₄基惰性阳极的强韧化材料。

- 图 11 ZrO_{2(f}/NiFe₂O₄复合材料断口的 SEM 像 Fig. 11 SEM image of fracture of ZrO_{2(f}/NiFe₂O₄ composites
- 表 6 阳极试样添加 ZrO_{2(f)}前后的性能

Table 6 Properties of samples with and without ZrO_{2(f)}

Mass fraction of $ZrO_{2}(s)/\%$	Density/ (g·cm ⁻³)	Bending strength/ MPa	Strength retention/	Fracture toughness/ (MPa·m ^{1/2})
0	4.66	67.06	48.9	2.56
3	4.60	88.92	75.9	4.62

3 结论

1) 高温下,碳纤维、玻璃纤维、氧化铝纤维和碳

化硅纤维在 NiFe₂O₄ 基体中是热力学不稳定的。碳纤 维因反应而消失,玻璃纤维、氧化铝纤维和碳化硅纤 维在高温时与基体发生反应形成过强的界面结合,不 利于纤维发挥补强增韧作用。因此,它们不适合作为 NiFe₂O₄基惰性阳极的强韧化材料。

2) 1 200 ℃时碳纤维经电镀镍处理后仍不能在 NiFe₂O₄ 尖晶石基体中稳定存在,而金属镍纤维熔化 后促进了 NiFe₂O₄ 基体中局部晶粒的异常长大,使阳 极力学性能下降。因此,镀镍碳纤维和镍纤维在高温 下也不能作为 NiFe₂O₄ 基惰性阳极的强韧化材料。

3) 1 400 ℃时 ZrO_{2(f)}与 NiFe₂O₄基体间具有良好的 物理和化学相容性,添加 3%ZrO_{2(f)}(质量分数)后,阳 极试样的力学性能得到了显著提高。因此,ZrO_{2(f)}可 作为 NiFe₂O₄基惰性阳极的纤维增强体。

REFERENCES

- SEKHAR J A, LIU J, DENG H. Graded non-consumable anode materials [C]// WELCH B. Proceedings of Light Metals. San Antonio: The Minerals, Metals and Materials Society, 1998: 597–603.
- [2] KVANDE H. Inert electrodes in aluminum electrolysis cells [C]// WOLFGANG S. Proceedings of Light Metals. San Diego: The Minerals, Metals and Materials Society, 1999: 369–376.
- [3] BENEDYK J C. Status report on inert anode technology for primary aluminum [J]. Light Metal Age, 2001, 59(1/2): 36–37.
- [4] 李 劼, 王志刚, 赖延清, 刘 伟, 徐宇杰. 5 kA 惰性阳极铝
 电解槽槽膛内形及热平衡[J]. 过程工程学报, 2008, 8(1): 54-58.

LI Jie, WANG Zhi-gang, LAI Yan-qing, LIU Wei, XU Yu-jie. Cell profile and heat balance of 5 kA inert anode aluminum reduction cell [J]. The Chinese Journal of Process Engineering, 2008, 8(1): 54–58.

- [5] RAY S P, RAPP R A. Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties: USA, 4454015 [P]. 1982–09–27.
- [6] OLSEN E, THONSTAD J. Nickel ferrite as inert anodes in aluminum electrolysis: part I—Material fabrication and preliminary testing [J]. Journal of Applied Electrochemistry, 1999, 29(3): 293–299.
- [7] SADOWAY D R. Inert anodes for the Hall-Heroult cell: The ultimate materials challenge [J]. Journal of the Minerals, Metals and Materials Society, 2001, 53(5): 34–35.
- [8] DING Y S, DONG S M, HUANG Z R, JIANG D L. Fabrication of short C fiber-reinforced SiC composites by spark plasma sintering [J]. Ceramics International, 2007, 33(1): 101–105.
- [9] MA Y P, ZHU B R, TAN M H. Properties of ceramic fiber reinforced cement composites [J]. Cement and Concrete

Research, 2005, 35(2): 296-300.

- [10] HE X B, YANG H. Preparation of SiC fiber-reinforced SiC composites [J]. Journal of Materials Processing Technology, 2005, 159(1): 135–138.
- [11] 华中胜,姚广春,马 佳,张志刚,梁李斯. 碳纤维表面镍镀 层的 XPS 分析[J]. 中国有色金属学报, 2011, 21(1): 165-170.
 HUA Zhong-sheng, YAO Guang-chun, MA Jia, ZHANG Zhi-gang, LIANG Li-si. XPS analysis of nickel layers on carbon fibers [J]. The Chinese Journal of Nonferrous Metals, 2011, 21(1): 165-170.
- [12] 张淑婷,姚广春. SiCf 增强 NiFe₂O₄ 复合材料的力学性能[J]. 中国有色金属学报, 2006, 16(9): 1589–1594.
 ZHANG Shu-ting, YAO Guang-chun. Mechanical properties of SiC_f/NiFe₂O₄ composite [J]. The Chinese Journal of Nonferrous Metals, 2006, 16(9): 1589–1594.
- [13] 田忠良, 赖延清, 李 劼, 刘业翔. NiFe₂O₄ 基金属陶瓷的电导率[J]. 粉末冶金材料科学与工程, 2005, 10(2):110-115.

TIAN Zhong-liang, LAI Yan-qing, LI Jie, LIU Ye-xiang. Electrical conductivities of $NiFe_2O_4$ based cermets [J]. Materials Science and Engineering of Powder Metallurgy, 2005, 10(2): 110–115.

- [14] 牟善彬,姬 刚. 晶粒大小及孔结构对氧化铝陶瓷耐磨性的 影响[J]. 现代技术陶瓷, 2001(4):42-44.
 MOU Shan-bin, JI Gang. Effect of the crystal size and microporous structure on the wear-resistance of aluminum ceramics [J]. Advanced Ceramics, 2001(4): 42-44.
- [15] 李传校,张玉军,尹衍升,郑华德,张敬超. Al₂O₃纤维增强钛 酸铝陶瓷[J].现代技术陶瓷,2002(4): 3-6.
 LI CHUAN-xiao, ZHANG Yu-jun, YIN Yan-sheng, ZHENG Hua-de, ZHANG Jing-chao. Study on Al₂O₃-fiber-reinforced Al₂TiO₅ ceramic composite [J]. Advanced Ceramics, 2002(4): 3-6.

(编辑 陈卫萍)