文章编号: 1004-0609(2012)12-3495-09

Ti 基氮化处理对 IrO2-Ta2O5 涂层阳极服役性能的影响

闫镇威,孟惠民,金 莹

(北京科技大学 腐蚀与防护中心, 北京 100083)

摘 要:采用热分解法制备钛基 IrO₂-Ta₂O₅ 涂层阳极,钛基体经喷砂和酸蚀处理后分别在 550、600、650、700 和 750 ℃下的高纯氮气气氛下进行氮化处理,研究钛基体氮化处理对 IrO₂-Ta₂O₅ 涂层钛阳极寿命和电催化活性的 影响。结果表明:经 550 ℃氮化处理时,钛基体表面酸蚀产生的 TiH₂ 未大量分解,同时生成钛的氮化物,表面形 成一层氢化物和氮化物膜,有利于 IrO₂ 的成核和晶粒细化,IrO₂-Ta₂O₅ 涂层具有多孔性特征,且电极表面析出的 活性物质 IrO₂ 晶粒尺寸更小、分布更均匀,平均晶粒尺寸小于 20 nm,具有较佳的电催化活性和较长的寿命,加 速寿命和伏安电荷值分别达到 1 066 h 和 68.4 mC/cm²。

关键词: IrO₂-Ta₂O₅涂层钛阳极; 氮化处理; 寿命; 电催化活性 中图分类号: TG178 **文献标志码:** A

Effect of nitrogen treatment of Ti substrate on service performance of IrO₂-Ta₂O₅ coating

YAN Zhen-wei, MENG Hui-min, JING Ying

(Laboratory for Corrosion-Erosion and Surface Technology, Corrosion and Protection Center, University of Science and Technology of Beijing, Beijing 100083, China)

Abstract: IrO₂-Ta₂O₅ coated titanium anodes were prepared by thermal decomposition, and Ti substrate were nitrogen treated at 550, 600, 650, 700 and 750 °C after sandblasting and acid etching. The effect of nitrogen treatment of titanium substrate on accelerated life and electro-catalytic properties of IrO₂-Ta₂O₅ coated titanium anode were studied. The results show that, during the nitriding process at 550 °C, the TiH₂ produced by acid etching on the surface of titanium substrate is not composed in massive and forms titanium nitride. At the same time, the formed hydride and nitride film on the surface is in favor of nucleation and grain refining of IrO₂. The IrO₂-Ta₂O₅ coatings are porous and the precipitated IrO₂ is smaller and more well-distributed. The average grain size of IrO₂ is less than 20 nm. The IrO₂-Ta₂O₅ coated titanium anode with the substrate nitride at 550 °C owned the best and electro-catalytic characteristics that the voltammetric charge is 68.4 mC/cm² and the longest life is 1 066 h.

Key words: IrO₂-Ta₂O₅ coated titanium anode; nitrogen treatment; accelerated life; electro-catalytic properties

在电镀、阳极氧化、PCB 电路板电镀铜等电化学 加工中大量使用阳极,在经历了石墨、铅合金后出现 了不溶性阳极(DSA)。不溶性阳极发展至今,一般分 为两类,即用于氯碱工业的钌系电极和用于硫酸介质 环境的铱系电极。钛基不溶性阳极对析氯反应具有良 好的电催化活性、机械稳定性和化学稳定性,具有较 高的服役寿命;但是在常见的析氧环境下,由于一般 电极上析氧的过电位较高,在高工作电位下阳极材料 自身易发生溶解或钝化,使用寿命较低,因此,对阳 极的要求相对析氯环境下更为苛刻。近些年来,由于 Ti/IrO₂-Ta₂O₅具有能承受大电流密度、低析氧电位、 优良的电催化活性和较高的耐蚀性等优点,越来越引

基金项目: 国家自然科学基金青年基金项目(50901009)

收稿日期: 2011-09-06; 修订日期: 2012-06-07

通信作者: 孟惠民, 教授; 电话: 010-62332548; E-mail: menghm16@126.com

起人们的重视,在金属冶炼、电镀及有机物的电解还 原等电化学工业得到广泛的应用。但是作为工业产 品,其质量较不稳定,所以提高电极制备工艺的稳定 性,改善吸氧活性,已成为 Ti/IrO₂-Ta₂O₅电极研究的 重点。近期的文献报道针对前驱体成分、涂层结构、 热分解温度等研究较多,但是从改变基体状态来改善 电极性能及寿命的研究报道较少^[1-5]。

钛的氮化物具有一定的导电导热性,耐酸、碱腐 蚀性,且与钛基体具有良好的结合力,是中间层的理 想选择。姜俊峰等^[6]通过离子镀法制备了 TiN 薄膜, 并以此为基体制备 IrO₂-Ta₂O₅ 涂层钛阳极,结果显 示,TiN 可增加涂层电极的催化活性,延长使用寿命, 但是离子注入法制备的 TiN 膜表面光滑,不利于氧化 物的负载,且成本较高,在工业化生产中不易大范围 推广。叶张军等^[7]利用高温退火法在 Ti 表面原位形成 TiN 薄膜,并以此为基体同样采用热分解法制备出含 TiN 中间层的 IrO₂-Ta₂O₅ 涂层钛电极,结果表明,TiN 中间层的存在可以明显地延长钛阳极的使用寿命,但 是未深入研究不同氮化处理温度下钛基铱钽氧化物阳 极电化学催化性能的变化规律。

本文作者对经过喷砂和酸蚀处理后的钛基体在不同的温度下在氮气中进行氮化处理,在钛基体表面生成一层钛的氮化物层。用传统的热分解方法制备钛基 IrO2-Ta2O5 涂层阳极(物质的量比为 7:3)。与未进行氮 化处理相比,研究对钛基体进行氮化处理后钛基 IrO2-Ta2O5 涂层阳极表面形貌、电化学催化性能及加 速寿命的变化规律^[8]。

1 实验

钛板在 0.4 MPa 的压力下使用粒径 180 µm 的棕刚 玉砂进行喷砂处理。喷砂后将钛板切割成 10 mm×10 mm 的薄片,然后进行碱煮和超声除油,除去表面杂 质和油污。处理干净的试样在 10%(质量分数)微沸的 草酸溶液中进行 1 h 的酸蚀蚀刻,然后用去离子水冲 洗干净吹干后封入石英管,管内充入氮气,气压为 2×10⁴ Pa,分别在 550、600、650、700 和 750 ℃下 保温 1 h 后随炉冷却。氧化物涂层的制备采用传统的 热分解法,涂层为 IrO₂-Ta₂O₅, Ir 与 Ta 的摩尔比为 7:3^[9–10],将 H₂IrCl₆及 TaCl₅的醇溶液配制成涂覆液, 用软毛刷均匀地涂刷在经过预处理的 Ti 基体上,然后 在箱式电阻炉中 120 ℃下干燥 10 min,转入马弗炉中 于 450 ℃氧化 10 min,出炉空冷。重复以上过程 9 次, 最后一层在 450 ℃下退火 60 min。涂覆前后称量,以 计算氧化物阳极的涂层载量(Ir 含量)。

1.1 微观分析

电极涂层的 SEM 表面形貌分析采用德国 LEO S-360 型扫描电子显微镜进行观察,电极的截面形貌采 用蔡司 SUPRA55 场发射扫描电子显微镜进行观察。

1.2 电化学测试

采用传统三电极体系,对电极采用铂金电极,饱和 甘汞电极为参比电极。所用测试溶液为 0.5 mol/L H₂SO₄溶液,工作温度控制在(25±1) ℃,采用 273 型 恒电位仪及 270 型电化学分析软件对所有阳极试样进 行循环伏安和交流阻抗测试。循环伏安测试所采用的 电位扫描速率分别为 10 mV/s,测试电位范围为 0.2~1.1 V(vs SCE)区间,循环次数为 10 次。伏安电荷 以最后一次循环的积分电荷表示。交流阻抗测量电位 选择析氧区的 1.35 V,频率扫描范围为 10 mHz~ 100 kHz。

2 结果与分析

2.1 涂层的表面形貌分析

图1所示为钛基体未经氮化处理和不同温度下氮 化处理后涂覆制得的阳极表面形貌。由图1可以看到, 铱钼阳极表面均有泥裂状裂纹出现。这些裂纹是由于 有机溶剂在烘烤与烧结过程中的快速挥发和涂层中的 应力共同造成。由于金属氧化物涂层和钛基体的热膨 胀系数不同,因此,在加热和冷却过程中均会在涂层 中产生内应力^[5]。此外,当氧化物阳极在空气中从加 热烧结温度快速冷却到室温过程中,还会在涂层中产 生热冲击应力[11]。很明显,对基体进行不同氮化处理 后,涂覆所得涂层表面形貌有较大差异。未经氮化处 理和在各温度下进行氮化处理的电极表面均不同程度 出现了干泥裂状和岛状形貌, 但是未经氮化处理和经 550 ℃氮化处理的电极表面岛状形貌不甚明显,裂纹 较宽,裂纹之间相互连接成网络状。而随着氮化处理 温度的升高,岛状物的出现愈加明显,裂纹也趋于细 小,连接成网络状的现象一定程度上减少,但是在氮 化处理温度达到 750 ℃时,涂层表面裂纹明显变宽并 连结成网络状,但是比未经氮化处理和经550℃氮化 处理的电极表面裂纹宽度小。

图 2 所示为钛基体未经氮化处理和不同温度下进 行氮化处理后涂覆制得阳极表面场发射电镜形貌,选 取的位置是表面平坦处。可以观察到所有阳极表面均

图1 钛基体经不同处理后制备的 IrO2-Ta2O5 涂层钛阳极表面的 SEM 像

Fig. 1 SEM images of IrO_2 -Ta₂O₅ coated titanium anodes on titanium substrate after different treatments: (a) Without nitrogen treatment; (b) Nitrogen treated at 550 °C; (c) Nitrogen treated at 600 °C; (d) Nitrogen treated at 650 °C; (e) Nitrogen treated at 700 °C; (f) Nitrogen treated at 750 °C

Fig. 2 FESEM images of IrO₂-Ta₂O₅ coated titanium anodes on titanium substrate after different treatments: (a) Without nitrogen treatment; (b) Nitrogen treated at 550 °C; (c) Nitrogen treated at 600 °C; (d) Nitrogen treated at 650 °C; (e) Nitrogen treated at 700 °C; (f) Nitrogen treated at 750 °C

生长有纳米 IrO₂ 晶粒。未经氮化处理和经 550 ℃氮化 处理的电极表面均匀分布了大量活性物质 IrO₂ 的晶 粒。晶粒排列均匀、取向一致性较好,尺寸小于 100 nm,在晶粒上未发现明显的二次结晶现象。在氮化温 度大于 600 ℃时,析出的 IrO₂ 晶粒数量明显减少,并 且晶粒的生长取向一致性变差,有的晶粒尺寸大于 100 nm,而刚生长的细小晶粒尺寸小于 20 nm,同时 在较为粗大的晶粒上出现二次甚至三次结晶的现象。 也就是说可能是氮化处理一定程度地抑制活性物质 IrO₂的析出,且有利于晶粒的长大。另外,在氮化温 度大于 600 ℃的电极表面存在大量疏松的孔洞,这可 能与钛基体氮化处理后表面氮化物层的结构有关。

图 3 所示为电极纵截面场发射扫描电镜像。由于 在纵截面电镜观察试样在制备过程中, IrO₂-Ta₂O₅ 涂 层极易碎裂、脱落,所以在进行磨样、抛光以前先电 镀一层镍来保护涂层。由图 3 可以看出,总体上说涂

图 3 钛基体经不同处理后制备的 IrO2-Ta2O5 涂层钛阳极纵截面场发射电镜像

Fig. 3 FESEM images of cross-section of IrO_2 -Ta₂O₅ titanium coated anodes on titanium substrate after different treatments: (a) Without nitrogen treatment; (b) Nitrogen treated at 550 °C; (c) Nitrogen treated at 600 °C; (d) Nitrogen treated at 650 °C; (e) Nitrogen treated at 700 °C; (f) Nitrogen treated at 750 °C

层与基体结合比较紧密,但是厚度不均匀,在基体表 面凹陷处涂层深入其中相对较厚,在基体表面尖锐处 涂层比较薄。比较几种温度条件下进行氮化处理后制 备的电极可以发现,在550℃下进行氮化处理制备的 电极涂层最厚也最为均匀,活性物质 IrO2 在电极表面 析出时,出现偏析和异常长大的情况较少,而其他条 件下制备得到的电极由于涂层厚度不均匀,在涂层较 薄处,活性物质 IrO2 会在结晶基体凸起处优先结晶、 长大,因而晶粒较为粗大,分布也不均匀。

2.2 钛基体氮化处理 XRD 分析

图 4 所示分别为钛基体未经氮化处理和 550、600、 650、700 和 750 ℃下氮化处理后的 XRD 谱。由图 4 可以看出,未经氮化处理和 550℃下氮化处理的钛基 体表面除了 Ti 的晶体衍射峰以外,还有 TiH₂特征峰 的出现,TiH₂出现的原因是草酸酸蚀处理在钛基体表 面形成。TiH₂在常温下是稳定的,酸蚀后的钛基体表 面覆盖的完整的 TiH₂ 膜可以阻止钛表面氧化膜的形 成^[12-13]。当加热到 450 ℃以上时,TiH₂ 会逐步分解成 钛的氧化物。因此在 550 ℃氮化处理的钛基体表面会 有未分解完全的 TiH₂的残留,但是随着处理温度的进 一步升高,TiH₂也逐渐分解,在 600 ℃以上时已经不 存在 TiH₂的特征峰,开始出现钛的氮化物特征峰。随 着氮化处理温度的升高,氮化物的特征峰也随之出现, 并出现结构性变化。在 600 ℃下进行氮化处理钛基体 表面只有非化学计量比的 TiN₀,的特征峰,在 650 ℃ 以上出现了 Ti₂N 特征峰, 而 750 ℃时出现了 TiN 特征 峰。TiN_x 具有熔点高、热稳定性和耐蚀性好及较低的 电阻率的特点,尤其是 TiN 表现出类似阀型金属的特 点,具有类似金属的导电性,室温电阻率仅为 3.34× 10⁻⁷ Ω·cm, 而 Ti 的电阻率为 5×10⁻⁶ Ω·cm, TiN 的电 导率是 Ti 的 15 倍。同时 TiN 耐酸耐碱,还具有与金 属间结合力大的特点,因此可以作为铱钽氧化物阳极 的优良载体^[14-15]。

2.3 电催化性能分析

图 5 所示为钛基体不同处理条件下铱钽氧化物阳 极在 0.5 mol/L 的硫酸溶液中的循环伏安曲线, 其电位 扫描范围为 0.2~1.1 V(vs SCE)。从图 5 可以看到,在 0.4~0.7 V 范围内, 各条循环伏安曲线不同程度出现氧 化还原峰,不同处理态氧还峰的位置未发生明显变化, 说明氮化处理并未改变铱钼氧化物阳极电催化机理, 曲线呈现出矩形镜面对称形态,是典型的电容器特征, 一般认为在此处对应于电极表面的活性转化 Ir(III)/Ir(IV)^[11]。图 6 所示为对图 5 在 0.2~1.1 V 范围 内的伏安曲线进行图形积分计算出的阳极伏安电 荷(q*)^[16-17]。由图 5 可以看到,基体在不同氮化处理 条件下得到的铱钽氧化物阳极的伏安电荷的差别比较 大,总体在 20~70 mC·cm² 范围内,其差别在于未经氮 化处理和 550 ℃下进行氮化处理的电极伏安电荷最 高,600 ℃时急剧下降,650 ℃时最低,而700 和 750 ℃时逐步升高。这一点和前面的微观形貌分析相

图 4 钛基体经不同处理后的表面 XRD 谱

Fig. 4 XRD patterns of titanium substrates after different treatments: (a) Without nitrogen treatment; (b) Nitrogen treated at 550 $^{\circ}$ C; (c) Nitrogen treated at 600 $^{\circ}$ C; (d) Nitrogen treated at 650 $^{\circ}$ C; (e) Nitrogen treated at 700 $^{\circ}$ C; (f) Nitrogen treated at 750 $^{\circ}$ C

吻合,随着氮化温度的升高,铱钽氧化物阳极表面的 裂纹逐渐减少,在650℃时,阳极表面裂纹数量最少, 而700和750℃时裂纹数量逐渐增加,表面裂纹数量 的多少直观地表示实际表面积的大小。另外,高倍下 的微观照片在未经氮化处理和低温下进行氮化处理的 阳极表面活性物质的结晶析出明显比高温下进行氮化 处理阳极的多,也即提供了更多的进行电化学催化反 应的活性点。

图 7 所示为钛基体经过不同处理铱钽氧化物阳极 在 0.5 mol/L 的硫酸溶液中施加电位为 1.35V 下电化学 阻抗谱的 Bode 图和 Nyquist 图。由图 7 可知,未进行 氮化处理和不同氮化温度处理下电极的曲线轮廓非常

图 5 钛基体经过不同处理后制备的 IrO₂-Ta₂O₅ 涂层钛阳极的循环伏安曲线

Fig. 5 Cyclic voltammograms of IrO₂-Ta₂O₅ coated titanium anodes on titanium anodes after different treatments:
1—Without nitrogen treatment;
2—Nitrogen treated at 550 °C;
3—Nitrogen treated at 600 °C;
4 Nitrogen treated at 650 °C;
5—Nitrogen treated at 700 °C;
6—Nitrogen treated at 750 °C

图 6 钛基体经不同处理后制备的 IrO₂-Ta₂O₅涂层钛阳极的 伏安电荷图

Fig. 6 Voltammetric charge diagram of IrO_2 -Ta₂O₅ coated titanium anodes on titanium anodes after different treatments

相似,这说明氮化处理对电极的析氧反应机理影响不 大。在复平面的整个频率范围内显示有两个容抗弧, 在 Bode 图上显示有两个相位角峰,高频区域对应电 极本体氧化物的多孔特性^[16],而低频区域对应电极外 表面与溶液界面间的电化学响应,在高频区域所观察 到的小半圆与施加的电位几乎无关,反映的是氧化物 涂层的阻抗,半圆的圆心并不落在实轴上,这表明电 极具有典型的多孔电极的特征。电极的交流阻抗数据 的最佳拟合等效电路可表示为 *LR_s*(*R_{ct}Q_d)(<i>R_tQ_t*)。*R_s*、

图 7 基体经过不同处理制得 IrO₂-Ta₂O₅ 涂层钛阳极 Bode 曲线和 Nyquist 曲线

Fig. 7 Experimental EIS patterns of IrO_2 - Ta_2O_5 coated titanium anodes on titanium anodes by different treatments: (a) Bode plots; (b) Nyquist diagrams

*R*_{et}和*R*_f分别表示溶液电阻、反应电阻和氧化物涂层电阻。考虑到热分解制备电极表面的不均匀性和多孔性,使用常相位角元件 CPE 替代电容元件。CPE 的阻抗可以表示为

$$Z_{\rm CPE} = [Y_0(j\omega)^n]^{-1}$$
(1)

式中: Y_0 是 CPE 常量; n是 CPE 的幂指数; ω 是角频 率。

常相位角元件 Q_{dl}和 Q_f在这里表示双电层电容和 涂层电容;感抗 L 可能是由于测试回路的干扰和电极 表面的多孔性造成的;CPE 的幂指数 n_{dl}常用来反映粗 糙电极涂层的均匀性和孔隙;(R_{et}Q_{dl})组合反映低频区 的析氧反应;(R_fQ_f)反映氧化物涂层孔隙结构的物理 反应。

图 8 所示为钛基体未经氮化处理和不同温度下进

行氮化处理的 Qd 曲线和 1/Rct 曲线。由图 8 可以看到, 钛基体在 550 ℃下进行氮化处理的铱钽阳极具有最高 的 Qd 值和 1/Rct 值, 钛基体未经氮化处理的铱钽阳极 具有最低的 Qdl 值和 1/Rct 值。钛基体氮化处理从 600 ℃ 开始, 铱钽阳极的 Qd 值急剧降低, 之后趋于稳定。 由于活性电极-溶液界面的双电层电容体现电极表面 的反应活性点数目,因此,Qd 的值与电极电催化活性 呈正相关,即是说钛基体在高温下进行氮化处理其电 催化活性有所降低, 而钛基体在 550 ℃下进行氮化处 理的铱钽阳极具有最高的电化学催化活性,这与循环 伏安积分电荷的结果基本一致。出现这种情况的原因 可能是在550℃时钛基体表面的氢化物未大量分解同 时出现微量的氮化物,在钛的氢化物和氮化物综合作 用下, 钛基铱钽阳极具有最佳的表面特征和电化学催 化性能;而随着氮化温度的升高,钛基体表面的氢化 物层大量分解并且未形成稳定的氮化物层,因此表面 特征和电化学催化性能较差;随着钛基体氮化温度的 进一步升高,其表面形成稳定、导电的氮化物层,使 得电极的电化学催化性能又随之提高,另一方面,在 较高温度下生成的钛的氮化物较为疏松,虽然导电性 能得到提高,但是氧气易于穿透氮化物层与基体钛进 行反应,导致钛基体在高温下进行氮化处理所得铱钽 阳极的电化学催化性能不及低温氮化处理的。图9所 示为钛基体经不同处理后制备的 IrO2-Ta2O5 涂层钛阳 极的 n_{dl} 值。从图 9 可以看出, 钛基体在 550 ℃下进行 氮化处理的铱钽阳极具有最小的 ndl 值, 而随着氮化温

图 8 钛基体经不同处理后制备的 IrO_2 -Ta₂O₅涂层钛阳极的 Q_{d1} 值和 $1/R_{c1}$ 值

Fig. 8 Q_{d1} and $1/R_{ct}$ values of IrO₂-Ta₂O₅ coated titanium anodes on titanium substrate after different treatments: 1—Without nitrogen treatment; 2—Nitrogen treated at 550 °C; 3—Nitrogen treated at 600 °C; 4 Nitrogen treated at 650 °C; 5—Nitrogen treated at 700 °C; 6—Nitrogen treated at 750 °C

图 9 钛基体经不同处理后制备的 IrO₂-Ta₂O₅涂层钛阳极的 n_{dl}值

Fig. 9 n_{d1} values of IrO₂-Ta₂O₅ coated titanium anodes on titanium substrate after different treatments: 1—Without nitrogen treatment; 2—Nitrogen treated at 550 °C ; 3—Nitrogen treated at 600 °C; 4 Nitrogen treated at 650 °C; 5—Nitrogen treated at 700 °C; 6—Nitrogen treated at 750 °C

度的升高 n_{dl}的值也随之增大,在 650 ℃时达到最大,随后逐渐减小。这说明钛基体在 550 ℃下氮化处理的 铱钽阳极涂层多孔性特征最强,而在 650 ℃时电极表 面孔隙最少,表面多孔性特征也最弱,随着氮化温度 进一步提高,n_{dl}值也逐渐增大,涂层的孔隙也逐渐增 多,这与电极表面形貌分析的结果比较吻合。

2.4 加速寿命试验

图 10 所示为 IrO₂-Ta₂O₅ 涂层钛阳极的加速寿命 曲线。从图 10 可以看到,在 550 ℃下进行氮化处理的 电极具有最高的相对加速寿命(1 066 h)和最低的槽电 压,其次是钛基体未经氮化处理的电极,这与电极伏 安电荷次序基本相同。而 600 ℃下进行氮化处理的电 极具有最低的相对加速寿命,在750℃下进行氮化处 理的电极的相对加速寿命略高于600℃下进行氮化处 理的电极。出现这种情况的原因可能是钛基体在 550 ℃下进行氮化处理后表面存留的 TH₂ 和生成的 TiN₀, 在钛基体表面形成了致密的导电性膜, 阻止了钛基体 的氧化和涂层的脱落。而在 600 ℃下进行氮化处理的 钛基体表面 TiH2 完全分解, 钛的氮化物并未开始大量 的形成,并不能形成具有良好保护作用的膜来阻止钛 基体的氧化。在650℃和700℃下进行氮化处理由于 氮化物层厚度增加和保护作用增强而具有相对较高的 加速寿命所致。当氮化温度达到750℃的时候, 钛的 氮化物类型和数量都增加,氮化物膜的致密度降低,

图 10 钛基体经不同处理后制备的 IrO₂-Ta₂O₅ 涂层钛阳极 的加速寿命曲线

Fig. 10 Accelerated life of IrO_2 - Ta_2O_5 coated titanium anodes on titanium substrate after different treatments

在电解过程中反复受到电流和气泡的冲击,涂层易于 脱落,从而加速失效。

3 结论

1) 钛基体未经氮化处理和在不同温度下氮化处理的铱钽阳极表面均具有多层电化学结构和多孔性结构。对钛基体进行氮化处理后, 钛基铱钽氧化物阳极的电化学催化性能呈现出随着氮化温度先降低后升高的趋势。

2) 在 550 ℃时, 钛的氢化物层和氮化物层同时存 在阻止了钛基体的氧化, 且钛基铱钽阳极具有泥裂纹 结构其表面生长有大量 IrO₂纳米晶体,从而提高表面 的催化活性点数量,因而具有更高的电化学催化活性。 随着氮化处理温度的不断升高,钛的氢化物不断分解, 并伴随着不同结构钛氮化物的生成,在处理温度在 600 ℃时, 钛基体表面已无 TiH₂的特征峰; 550 ℃和 600 ℃时钛的氮化物是 TiN_{0.3}; 650 ℃时,出现 Ti₂N; 当氮化处理温度达到 750 ℃时,出现了 TiN 的特征峰, 因而电极的电化学催化性能有所提高。

3)在550℃氮化处理条件下,钛基体表面酸蚀产 生的TiH₂未大量分解,且有TiN_{0.3}的生成,在涂层制 备过程中减轻了钛基体的氧化,同时钛基铱钽阳极具 有泥裂纹结构且表面生长有大量IrO₂纳米晶体,从而 提高表面的催化活性点数量,因而具有更高的电化学

催化活性。

4) 在 550 ℃下进行氮化处理的电极由于表面致 密的 TH₂和 TiN_{0.3} 膜对基体的保护作用和高的导电性 而具有最高的相对加速寿命和最低的稳定槽电压。

REFERENCES

- BEER H B. The Invention and industrial development of metal anodes[J]. Electrochem Soc, 1980, 127: 303C–307C.
- [2] 张招贤. 钛阳极 40 年[J]. 氯碱工业, 2007(1): 15-22.
 ZHANG Zhao-xian. Forty-year development of titaniumanode[J]. Chlor-Alkali Industry, 2007(1): 15-22.
- [3] 孔德生,吕文华,冯媛媛,毕思玮. DSA 电极电催化性能研究 及尚待深入探究的几个问题[J].化学进展,2009,21(6): 1107-1117.

KONG De-sheng, LU Wen-hua, FENG Yuan-yuan, BI Si-wei. Advances and some problems in electrocatalysis of DSA electrodes[J]. Progress in Chemistry, 2009, 21(6): 1107–1117.

- [4] TRASATTI S. Electrocatalysis: Understanding the success of DSA[®][J]. Electrochim Acta, 2000, 45: 2377–2385.
- [5] 颜 琦. 50% IrO₂-50%Ta₂O₅ 被覆钛阳极涂层的组织结构研究
 [J]. 福建工程学院学报, 2008, 6(1): 21-24.
 YAN Qi. The study on Ti anodes coated with 50%IrO₂-50%Ta₂O₅[J]. Journal of Fujian University of Technology, 2008, 6(1): 21-24.
- [6] 姜俊峰,徐海波,王廷勇,王 佳,许立坤,成 光. TiN 基 IrO₂-Ta₂O₅ 涂层电催化性能研究[J]. 稀有金属材料与工程, 2007, 36(2): 344-348.

JIANG Jun-feng, XU Hai-bo, WANG Ting-yong, WANG Jia, XU Li-kun, CHENG Guang. Study on electrocatalytic properties of TiN based IrO₂-Ta₂O₅ coating anodes[J]. Rare Metal Materials and Engineering, 2007, 36(2): 344–348.

 [7] 叶张军,甘永平,张文魁,黄 辉,陶新永.含 TiN 中间层 IrO₂-Ta₂O₅ 涂层钛阳极的电催化活性[J].中国有色金属学报, 2009,19(8):1473-1479.

YE Zhang-jun, GAN Yong-ping, ZHANG Wen-kui, HUANG Hui, TAO Xin-yon. Electrocatalytic properties of IrO₂-Ta₂O₅/Ti coating anodes with TiN interlayer[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(8): 1473–1479.

[8] 胡吉明, 孟惠民, 张鉴清, 吴继勋, 杨德钧, 曹楚南. Ti 基 IrO₂+Ta₂O₅ 涂层阳极的析氧电催化活性[J]. 金属学报, 2001, 37(6): 628-632.

HU Ji-ming, MENG Hui-min, ZHANG Jian-qing, WU Ji-xun, YANG De-jun, CAO Chu-nan. Electrocatalytic activity for oxygen evolution of titanium based IrO₂+Ta₂O₅ anodes[J]. Acta Metallrugica Sinica, 2001, 37(6): 628–632.

[9] KRYSA J, MRAZ R, KULE L, ROUSAR I. Effect of coating thickness and surface treatment of titanium on the properties of IrO₂-Ta₂O₅ anodes[J]. J Applied Electrochemistry, 1996, 26: 999-1005.

- [10] CARDARELLI F, TAXIL P, SAVALL A, COMNINELLIS C, MANOLI G, LECLERC O. Preparation of oxygen evolving electrodes with long service life under extreme conditions[J]. J Applied Electrochemistry, 1998, 28: 245–250.
- [11] HU Ji-ming, MENG Hui-min, ZHANG Jian-qing, CAO Chu-nan. Degradation mechanism of long service life Ti/IrO₂-Ta₂O₅ oxide anodes in sulphuric acid[J]. Corros Sci, 2002, 44: 1655–1668.
- [12] XU Li-kun, XIN Yong-lei, WANG Jun-tao. A comparative study on IrO₂-Ta₂O₅ coated titanium electrodes prepared with different methods[J]. Electrochim Acta, 2009, 54: 1820–1825.
- [13] 初立英,许立坤,吴连波,王廷勇,王均涛,陈光章. 草酸浸 蚀对氧化物阳极形貌及电催化性能的影响[J]. 金属学报, 2005,41(7):763-768.

CHU Li-ying, XU Li-kun, WU Lian-bo, WANG Ting-yong, WANG Jun-tao, CHEN Guang-zhang. Effect of oxalic acid etching on morphology and electrocatalytic activity of oxide anodes[J]. Acta Metallrugica Sinica, 2005, 41(7): 763–768.

[14] RUDENJA S, LEYGRAF C, PAN J, KULU P, TALIMETS E, MIKLI V. Duplex TiN coatings deposited by arc plating for increased corrosion resistance of stainless steel substrates[J]. Surface and Coatings Technology, 1999, 114: 129-136.

 [15] 蒋雅雅,赖珍荃,王震东,黄奇辉.基底温度对磁控溅射制备 氮化钛薄膜的影响[J].南昌大学学报:自然科学版,2007, 31(6):545-548.
 JIANG Ya-ya, LAI Zheng-quan, WANG Zheng-dong, HUANG

Qi-hui. Effect of substrate temperature on titanium nitride thin films grown by reactive magnetron sputtering[J]. Journal of Nanchang University: Natural Science, 2007, 31(6): 545–548.

- [16] 胡吉明,朱艳冗,孟惠民,孙冬柏,吴继勋,杨德钧. 钛基 IrO₂-Ta₂O₅ 涂层阳极电化学多孔性研究[J]. 稀有金属, 2000, 24(5): 345-348.
 HU Ji-ming, ZHU Yan-rong, MENG Hui-min, SUN Dong-bai, WU Ji-xun, YANG De-jun. Study on electrochemical porosity of titanium based IrO₂-Ta₂O₅ anodes[J]. Chinese Journal of Rare Metals, 2000, 24(5): 345-348.
- [17] GALIZZIOLI D, TANTARDINI F, TRASATTI S. Ruthenium dioxide: a new electrode material. I . Behaviour in acid solutions of inert electrolytes[J]. Appl Electrochem, 1974, 4: 57-67.

(编辑 龙怀中)