文章编号: 1004-0609(2012)10-2839-07

镍基合金表面二硅化钼复合涂层的制备和性能

颜建辉¹,李益民²,张厚安³,唐思文¹,许剑光¹,刘龙飞¹

湖南科技大学 先进材料制备及应用技术研究所,湘潭 411201;
 中南大学 粉末冶金国家重点实验室,长沙 410083;

3. 厦门理工学院 材料科学与工程系, 厦门 361024)

摘 要:为了改善 K403 镍基高温合金的高温抗氧化性能,采用大气等离子喷涂在镍基合金表面制备了 4 种不同 结构的 MoSi₂ 复合涂层。结果表明:4 种结构涂层中 K403/NiCoCrAlY/ZrO₂/30%(体积分数)ZrO₂-MoSi₂/MoSi₂ 复合 涂层的抗热震性能最好,且该涂层的界面结合强度最高(22.5 MPa)。MoSi₂ 涂层的自身结合强度大于涂层界面结合 强度,结合机理以机械咬合式为主。该复合涂层在 1 200 ℃氧化 120 h 后的质量增加仅为 3.42 mg/cm²,提高 K403 合金和传统氧化锆涂层的抗氧化性能。MoSi₂ 复合涂层表面在高温时生成了一层致密的 SiO₂ 保护膜,阻碍了氧的 扩散,减轻了过渡层 NiCoCrAlY/ZrO₂界面处的氧化。 关键词: 镍基合金;二硅化钼;复合涂层;组织;性能

中图分类号: TB304 文献标志码: A

Preparation and properties of molybdenum disilicide composites coatings on surface of nickel-based alloy

YAN Jian-hui¹, LI Yi-min², ZHANG Hou-an³, TANG Si-wen¹, XU Jian-guang¹, LIU Long-fei¹

(1. Advanced Materials Synthesis and Application Technology Institute,

Hunan University of Science and Technology, Xiangtan 411201, China;

2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;

3. Department of Material Science and Engineering, Xiamen University of Technology, Xiamen 361024, China)

Abstract: In order to improve the oxidation resistance of nickel-based alloy at high temperature, four kinds of $MoSi_2$ composite coatings were successfully prepared on the nickel-based alloys surface by air plasma spraying. The results indicate that the thermal shock resistance and the adhesion strength (22.5 MPa) of K403/NiCoCrAlY/ZrO₂/30%(volume fraction)ZrO₂-MoSi₂/MoSi₂ composites coating are the best among the four kinds of coatings. The self-bonding strength of MoSi₂ coating is greater than the interfacial bond strength of the composites coating, and the bond mechanism is mechanical bond with bite combination. The mass increment is only 3.42 mg/cm² when MoSi₂ composites coating, the oxidation resistance of the MoSi₂ composites coating is improved. During the high-temperature oxidation process, a dense SiO₂ layer is formed on the surface of the MoSi₂ coating, which hinder the diffusion of oxygen. The oxidation degree of the boundary between the NiCoCrAlY and zirconia ceramic is relieved.

Key words: nickel-based alloy; molybdenum disilicide; composites coating; microstructure; properties

收稿日期: 2011-09-13; 修订日期: 2012-03-28

基金项目: 湖南省自然科学基金资助项目(11JJ3063, 12JJ9011); 湖南省教育厅科研项目(11B047, 11C0513); 江苏省新型环保重点实验室开放课题 基金资助项目(AE201108)

通信作者: 颜建辉, 副教授, 博士; 电话: 0731-58290847; E-mail: yanjianhui88@163.com

镍基高温合金因其具有较好的综合性能已被广泛 用于制造航空发动机和各类燃气轮机的热端部件。随 着航空航天工业的发展,越来越高的涡轮进口温度要 求其叶片材料必须具有更高的抗高温氧化腐蚀的能 力^[1]。可行的方法是在镍基合金表面涂覆防护涂层。 镍基合金的防护涂层主要有金属间化合物涂层、金属 涂层、热障涂层和表面改性涂层^[2-4]。传统的金属间化 合物涂层和金属涂层难以满足高压涡轮叶片长时间抗 高温氧化的工作要求,使用温度一般不能超过 1 100 ℃。用氧化钇部分稳定的氧化锆陶瓷涂层可降低涡轮 叶片表面温度 200 ℃左右^[5-6]。但是,通过氧化锆涂 层进行离子扩散和通过涂层孔洞或裂纹扩散是传统热 障涂层运输氧的两种主要途径[7-8],由此,导致过渡层 和氧化锆界面的 TGO 生长过快, 使得氧化锆涂层脱 落而过早失效^[9-10]。因此,寻找一些具有更好抗高温 性能的涂层材料,以突破 ZrO,的寿命极限显得非常重 要。金属间化合物二硅化钼(MoSi₂)具有优异的高温抗 氧化性能,在1000℃以上具有延展性,为缓解涂层 热应力提供了帮助,是一种发展潜力极大的高温抗氧 化涂层^[11-12]。所以,把 MoSi₂ 作为氧化锆热障涂层的 最外层,有望缓解过渡层与陶瓷层界面处的氧化,提 高传统氧化锆热障涂层的高温抗氧化性能。为了解决 镍基合金与 MoSia 热膨胀系数不匹配的问题, 使复合 涂层同时具有热障功效和更好的抗氧化性,本文作者 以 MoSi₂作为镍基合金的最外层,设计并制备了 4 种 不同结构的 MoSi2 复合涂层, 对复合涂层的组织结构、 结合强度、抗热震性能及抗氧化性能进行了初步的探 讨,旨在为提高镍基合金的高温抗氧化性能提供基础 数据和理论依据。

1 实验

基体材料为 K403 镍基合金, 打底层 NiCoCrAlY 粉末由北京矿冶研究总院提供, 粒度为 38~74 µm。纳 米氧化锆团聚体粉末(8%Y₂O₃-ZrO₂)由武汉材料保护

表1 各涂层的喷涂工艺参数

所提供, 粒度为 20~40 μm。自制近球形 MoSi₂ 团聚粉 末^[12], 粒度为 30~54 μm。30%(体积分数)ZrO₂-MoSi₂ 复合粉末由纳米 8%Y₂O₃-ZrO₂和 MoSi₂ 团聚粉末按体 积比均匀混合而成。根据 K403 基体与 MoSi₂膨胀系 数的匹配关系,设计了以下 4 种不同类型复合涂层, 采用 APS-2000 型大气等离子喷涂设备制备涂层,主 要喷涂参数及涂层厚度见表 1。

1) K403/NiCoCrAlY/MoSi2

2) K403/NiCoCrAlY/ZrO₂/MoSi₂

3) K403/NiCoCrAlY/ZrO₂/30%(体积分数)ZrO₂-MoSi₂

4) K403/NiCoCrAlY/ZrO₂/30%(体积分数)ZrO₂-MoSi₂/MoSi₂

用拉伸法(GB/T8642—2002 标准)测定复合涂层 的结合强度,试验值为相同试验条件下5个试样的算 术平均值。复合涂层的抗热震性能根据航空工业标准 HB7269—96进行测试:4种不同类型的复合涂层试样 在 1000 ℃箱式电炉中加热保温5min,随后放入 大气中冷却,反复重复这一过程,直到涂层剥落面积 达到5%时,涂层完全失效为止。用记录 MoSi₂复合 涂层失效时的热震次数表征涂层的抗热震性能。

氧化试验于 1 200 ℃在马沸炉中进行。样品放入 高纯氧化铝坩埚,每隔一定时间,从箱式电阻炉中取 出样品,自然冷却后采用分析天平(感应量 10⁻⁴ g)称 样品的质量(不计脱落物质量),随后又放入炉中继续 氧化,样品在炉中氧化的累计时间为 120 h。

利用德国 D8-Advance 型全自动 X 射线衍射仪检测涂层的物相组成,采用 JSM-5100LV 扫描电镜观察涂层的表面和截面形貌。

2 结果与讨论

2.1 MoSi₂涂层组织结构

图 1 所示为 MoSi₂涂层的表面 XRD 谱。涂层由 MoSi₂(t)相、MoSi₂(h)相和少量的 Mo₅Si₃相组成。喷涂

Table 1 Processing	parameters of	coatings				
Coating	Current/	Voltage/	Flux of Ar/	Powder feed rate/	Spray distance/	Coating thickness/
Coating	А	V	$(L \cdot min^{-1})$	$(g \cdot min^{-1})$	mm	μm
NiCoCrAlY	600	50	45	40	120	100
Nano-ZrO ₂	550	70	40	32	90	150
30%ZrO ₂ -MoSi ₂	530	70	45	30	90	100
MoSi ₂	520	68	45	21	100	120

粉末的 MoSi₂相是属于稳定的 C11b 型(简称 MoSi₂(t)) 四方晶体结构。由于等离子喷涂火焰温度非常高, MoSi₂(t)在等离子射流中,迅速从常温升至高温直至 熔化,高温时会发生晶型转变,熔融的 MoSi₂(t)绝大 部分转变为 MoSi₂(h)晶体结构(MoSi₂(h)结构在 1900 ℃以上为不稳定的相^[13])。由于熔滴碰撞到基体 材料表面后急剧冷却(冷却速度可达 10⁶ K/s)、凝固、 形成淬冷组织^[14],所以在等离子喷涂快速冷却过程 中,MoSi₂(h)很难发生相变,使得六方结构 MoSi₂(h)

图1 MoSi₂涂层 XRD 谱

Fig. 1 XRD pattern of MoSi₂ coating

得以保存下来。图 2 为涂层 SEM 背散射电子像,涂 层经过了加热、加速、变形和冷却等过程形成了典型 的层状结构。

2.2 复合涂层的微观组织

图 3 所示为 4 种不同类型复合涂层的截面形 貌。由图 3 可见,各种涂层的层与层之间的界面均呈 "犬齿"状机械结合,界面基本没有出现大的孔洞和 裂纹,相互之间结合较好,涂层较致密。K403/NiCo-

图 2 MoSi₂涂层截面组织

Fig. 2 Section morphology of MoSi₂ coating

图 3 4 种复合涂层的截面形貌

Fig. 3 Cross-section morphologies of four kinds of coatings: (a) K403/NiCoCrAlY/MoSi₂; (b) K403/NiCoCrAlY/ZrO₂/MoSi₂; (c) K403/NiCoCrAlY/ZrO₂/30%ZrO₂-MoSi₂; (d) K403/NiCoCrAlY/ZrO₂/30%ZrO₂-MoSi₂/MoSi₂

CrAlY₂O₃/ZrO₂/30%ZrO₂-MoSi₂/MoSi₂ 复合涂层的 ZrO₂、30%ZrO₂-MoSi₂和 MoSi₂三层之间的两个界面 在背散射像下没有明显的区别,表明成分逐渐变化的 界面结合较好(见图 3(d))。

2.3 复合涂层的结合强度

4种复合涂层的结合强度见表 2。由表 2 可见, 4 种不同类型的复合涂层中 K403/NiCoCrAlY/MoSi₂ 涂 层的抗拉强度最低(为 10.27 MPa), K403/NiCoCrAlY/ ZrO₂/30%ZrO₂-MoSi₂/MoSi₂ 复合涂层的结合强度最高 (为 22.50 MPa),断裂位置均发生在各层的界面处而未 发生在层内。可见, 4 种复合涂层中 MoSi₂涂层自身 结合强度高于所有的界面结合强度,中间层数的引入 增加了涂层的结合强度。各种复合涂层的断裂位置如 图 4 所示。对于 K403/NiCoCrAlY/MoSi₂涂层来说, 断裂在 NiCoCrAlY 和 MoSi₂涂层界面处发生,该界面 处于结合薄弱环节; K403/NiCoCrAlY₂O₃/ZrO₂/MoSi₂ 涂层中的 ZrO₂/MoSi₂界面结合较差,断裂在 MoSi₂和 ZrO₂ 涂层界面处发生; 而对于 K403/NiCoCrAlY/ ZrO₂/30%ZrO₂-MoSi₂和 K403/NiCoCrAlY/ZrO₂/30% ZrO₂-MoSi₂/MoSi₂复合涂层来说,约 2/3的断裂从 NiCoCrAlY和ZrO₂界面处发生,约 1/3的断裂从基体 和NiCoCrAlY界面处发生,说明该复合涂层的主要薄 弱环节是NiCoCrAlY/ZrO₂界面。

热喷涂 MoSi₂涂层的结合强度主要取决于喷涂粒 子之间、粒子与基体之间的结合状况以及基体和涂层 体系中的残余应力状况。粒子沉积过程结束后,材料 由高温快速冷却到常温时,涂层与基体不同的热膨胀 系数可以产生较大的失配应变。在4种复合涂层中, K403/NiCoCrAlY/MoSi₂ 涂层中的 NiCoCrAlY/MoSi₂ 界面热膨胀系数相差最大,制备过程中产生的失配应 变最大,界面间产生较大残余应力,导致该界面处产 生微裂纹和气孔,故其结合强度低。而对于 K403/ NiCoCrAlY/ZrO₂/30%ZrO₂-MoSi₂/MoSi₂涂层,由于从 金属粘结层到最外层 MoSi₂采用纳米 ZrO₂和 30%ZrO₂-MoSi₂ 作为过渡层材料,使涂层的热膨胀系 数逐渐变化,消除了涂层中的成分突变和涂层中的宏 观层间界面以及由此造成的物理性质突变,缓解了涂

表2 涂层的结合强度

Table 2 Adhesive strength of coating	ıgs
--	-----

Coating	Adhesive strength/MPa	Thermal shock time
K403/NiCoCrAlY/MoSi ₂	10.27	5
K403/NiCoCrAlY/ZrO2/MoSi2	15.36	11
K403/NiCoCrAIY/ZrO ₂ /30%ZrO ₂ -MoSi ₂	18.18	25
K403/NiCoCrAlY/ZrO2/30%ZrO2-MoSi2/MoSi2	22.50	34

图4 4种复合涂层拉伸试验涂层撕裂面

Fig. 4 Fracture surfaces of four kinds of coatings under tensile testing: (a)~(b) K403/NiCoCrAlY/MoSi₂; (c)~(d) K403/NiCoCrAlY/ZrO₂/doSi₂; (c)~(f) NiCoCrAlY/ZrO₂/30%ZrO₂-MoSi₂; (g)~(h) K403/NiCoCrAlY/ZrO₂/30%ZrO₂-MoSi₂ (d) K403/NiCoCrAlY/ZrO₂/30%ZrO₂-NOSi₂ (d) K403/NiCoCrAlY/ZrO₂/30%ZrO₂-NOSi₂ (d) K403/NiCoCrAlY/ZrO₂/30%ZrO₂-NOSi₂ (d) K403/NiCOCrAlY/ZrO₂/30%ZrO₂-NOSi₂ (d) K403/NiCOCrAlY/ZrO₂-NOSi₂ (d) K403/NiCOCrAlY/ZrO₂ (d) K403/NiCOCrAlY/ZrO₂ (d) K40

层中的热应力和界面处的应力集中,改善了涂层界面 的结合状况,提高涂层的结合强度。

2.4 4种复合涂层的抗热震性能

K403 镍基高温合金 4 种 MoSi₂ 复合涂层在 1 000 ℃空淬条件下的抗热震次数见表 2。由表 2 可见, K403/NiCoCrAlY/ZrO₂/30%ZrO₂-MoSi₂/MoSi₂ 复合涂 层的抗热震性能最好(可达 34 次),而 K403/ NiCoCrAlY/MoSi₂抗热震效果最差(仅为 5 次)。另外, 从 4 种不同类型涂层的结合强度结果来看,K403/ NiCoCrAlY/30%ZrO₂-MoSi₂/MoSi₂ 涂层内部各个界面 结合强度最高,界面之间的机械咬合力较大,能够承 受较强的交替变换的冷热载荷能力。

热震失效主要是各涂层界面处的热膨胀应力 所致。在反复加热过程中,界面处储积的应变能密 度逐渐增加,K403/NiCoCrAlY/ZrO₂/30%ZrO₂-MoSi₂/ MoSi₂复合涂层界面热膨胀系数相差最小,克服了 MoSi₂表面层与金属底层之间的物理性质突变现象, 缓解了涂层中的热应力和界面处应力集中,从而增强 了涂层的抗热震能力。图 5 所示为 K403/NiCoCrAlY/ 30%ZrO₂-MoSi₂/MoSi₂涂层热震 34 次后的截面形貌。 由图 5 可见,ZrO₂涂层与 NiCoCrAlY 出现了横向界 面裂纹,在ZrO₂涂层内部还出现了少量垂直界面的微 裂纹,这些裂纹的存在可以释放部分应力,而最外层 的 MoSi₂涂层内部出现了大量裂纹和 MoSi₂脱落的现 象。

图 5 K403/NiCoCrAlY/30%ZrO₂-MoSi₂/MoSi₂ 涂层热震截 面形貌

Fig. 5 Cross-section morphology of K403/NiCoCrAlY/ 30%ZrO₂-MoSi₂/MoSi₂ coating after thermal shocking

热震试验时,加热和冷却过程周期性变化,致使 MoSi₂ 涂层内应力也呈周期性变化,即涂层经受循环 应力的作用。陶瓷材料有确定的疲劳强度极限,当涂 层所经受的循环应力高于涂层的疲劳强度极限时,涂 层内将产生裂纹;裂纹一旦形成,脆性的 MoSi₂ 陶瓷 涂层对其阻碍作用很小。所以,MoSi₂ 内部的裂纹将 迅速扩展直至涂层剥落。对于纳米 ZrO₂涂层来说,由 于 ZrO₂陶瓷层中存在较多的微裂纹和孔隙等缺陷,在 高温作用下,当过渡层界面氧化物形成尚不严重时, 热膨胀不匹配应力可以通过微裂纹的自由扩展或愈合 释放,或者通过形成新裂纹释放。K403/NiCoCrAlY/ 30%ZrO₂-MoSi₂/MoSi₂ 涂层的热震失效发生在 MoSi₂ 表面层与 30%ZrO₂-MoSi₂ 层的界面处,其断裂是一个 裂纹形成与扩展的过程,该失效过程具有连续性:即 首先在界面形成微裂纹,然后微裂纹连接形成粗大网 状裂纹,最后导致 MoSi₂ 陶瓷面层的剥落。

2.5 镍基 MoSi₂复合涂层的氧化特性

K403/NiCoCrAlY/ZrO₂/30%ZrO₂-MoSi₂/MoSi₂ 复 合涂层、氧化锆涂层以及基体材料在 1 200 ℃氧化 120 h 时的氧化动力学曲线如图 6 所示。由图 6 可见,K403 合金质量减少非常快,氧化层脱落现象严重。ZrO₂涂 层氧化 120 h 后质量增加为 8.10 mg/cm²,随后还有递 增的趋势;MoSi₂复合涂层在初始氧化阶段(10 h 内) 质量增加较快,随着氧化时间的延长,样品质量增加 逐渐缓慢,然后呈现平稳趋势。MoSi₂复合涂层氧化 120 h 后质量增加为 3.42 mg/cm²,氧化速率为 2.85×10⁻² mg/cm²·h。与 K403 合金和传统氧化锆热障 涂层相比,MoSi₂复合涂层的抗氧化性能较好。

图 6 涂层和 K403 合金在 1 200 ℃氧化 120 h 动力学曲线 Fig. 6 Oxidation dynamics curves of coating and K403 alloy at 1 200 ℃ for 120 h

K403 合金表面氧化时主要生成 NiO、Co₂CrO₄、 NiWO₄等物质,没有形成保护性的氧化膜,对基体材 料不能起到保护作用。纳米 ZrO₂涂层氧化 120 h 后的 过渡层和 ZrO₂界面处形貌如图 7(a)所示。由图 7(a)可 见,涂层中的 NiCoCrAlY 已经出现明显的氧化现象, 界面处反应生成 NiO、Al₂O₃和 Cr₂O₃等复杂的氧化物。 高温下热障涂层中由于 γ-Al₂O₃到 α-Al₂O₃的相变,会 引起附加的残余应力。若生成 Al₂O₃较厚,则会导致 涂层剥落、过早地失效。大量氧化物形成并不断向 ZrO₂表面层中生长,是导致涂层热稳定失效的主要原 因之一。

MoSi₂复合涂层氧化120h后的截面形貌如图7(b) 和(c)所示,结合涂层氧化后表面 X 射线衍射结果(图 8)可知, MoSi₂涂层表面生成了一层致密的 SiO₂氧化

图 7 涂层氧化 120 h 后的截面形貌

Fig. 7 Cross-section morphologies of coating oxidized for 120 h: (a) NiCoCrAlY/ZrO₂ boundary of nano-ZrO₂ coating; (b) Oxidized K403/NiCoCrAlY/30%ZrO₂-MoSi₂/MoSi₂ coating; (c) NiCoCrAlY/ZrO₂ boundary of K403/NiCoCrAlY/30%ZrO-MoSi₂/MoSi₂ coating

图 8 涂层氧化 120 h 的表面 XRD 谱

Fig. 8 XRD pattern of MoSi₂ coating oxidized for 120 h

层,SiO₂层下面主要是 MoSi₂和 Mo₅Si₃等物质。由于 高温度下 SiO₂处于流动性较好的状态,质点的迁移能 力增强,表面氧化层内部没有裂纹等缺陷,易形成连 续而致密的保护膜,能够阻止空气中的氧原子对基体 材料的侵入^[15]。同时,玻璃态的 SiO₂能够弥补和填充 涂层中的裂纹,具有自愈合功能。这些特点保证了 MoSi₂ 涂层具有出色的高温抗氧化性。另外,比较图 7(a)和(c)可知,MoSi₂ 复合涂层的过渡层 NiCoCrAlY 和 ZrO₂界面处生成的氧化物比传统纳米 ZrO₂涂层要 少。可见,MoSi₂复合涂层提高了传统 ZrO₂涂层的抗 氧化性能。

3 结论

1) 4 种不同结构的 MoSi₂复合涂层中, 层与层之 间界面均以咬合形式机械结合; K403/NiCoCrAlY/ ZrO₂/30%ZrO₂-MoSi₂/MoSi₂ 复合涂层的结合强度最 高,为22.5 MPa。ZrO₂、30%ZrO₂-MoSi₂、MoSi₂这3 层之间的界面不明显,成分逐渐变化的界面增加了涂 层的结合强度。

2) MoSi₂涂层的自身结合强度均大于涂层各界面结合强度。K403/NiCoCrAlY/ZrO₂/30%ZrO₂-MoSi₂/MoSi₂复合涂层的抗热震性能最好,在1000℃保温5min、空淬条件下的抗热震性能为34次。

3) K403/NiCoCrAlY/ZrO₂/30%ZrO₂-MoSi₂/MoSi₂ 复合涂层在 1 200 ℃氧化 120 h 后的质量增加为 3.42 mg/cm²,该复合涂层减轻了传统 ZrO₂ 涂层中 NiCoCrAlY/ZrO₂界面处的氧化,提高了 K403 高温合 金和传统 ZrO₂热障涂层的高温抗氧化性能,这归因于 复合涂层表面生成了一层致密的 SiO₂保护膜。

REFERENCES

- [1] 胡壮麒, 刘丽荣, 金 涛, 孙晓峰. 镍基单晶高温合金的发展
 [J]. 航空发动机, 2005, 31(3): 1-7.
 HU Zhuang-qi, LIU Li-rong, JIN Tao, SUN Xiao-feng.
 Development of the Ni-base single crystal superalloys[J].
 Aeroengine, 2005, 31(3): 1-7.
- [2] 郭建亭,周兰章,李谷松. 高温结构金属间化合物及其强韧化机理[J]. 中国有色金属学报, 2011, 21(1): 1-34.
 GUO Jian-ting; ZHOU Lan-zhang; LI Gu-song. High temperature structural intermetallics and their strengthening-softening mechanisms[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(1): 1-34.
- [3] WANG B, SUN C, GONG J, HUANG R. Oxidation behaviour of the alloy IC-6 and protective coatings[J]. Corrosion Science, 2004, 46(3): 519–528.
- [4] KHOR K A, YANG J. Transformability of t-ZrO₂ and lattice parameters in plasma sprayed rake earth oxides stabilized zirconia coatings[J]. Scripta Materialia, 1997, 37(9): 1279–1286.
- [5] VOEVODIN A A, ZABINSKI J S. Nanocomposite and nanostructured tribological materials for space applications[J]. Composites Science and Technology, 2005, 65(5): 741–748.
- [6] GUO F A, TRANNOY N, GERDAY D. An application of scanning thermal microscopy analysis of the thermal properties of plasma-sprayed yttria-stabilized zirconia thermal barrier coating[J]. Journal of the European Ceramic Society, 2005, 25(7): 1159–1166.
- [7] 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(9/10): 18-26.
 GUO Hong-bo, GONG Sheng-kai, XU Hui-bin. Progress in thermal barrier coatings for advanced aeroengines[J]. Materials China, 2009, 28(9/10): 18-26.
- [8] LEE W Y, STINTON D P, BERNDT C C. Concept of functionally graded materials for advanced thermal barrier coating applications[J]. J Amer Ceram Soc, 1996, 79(12):

3003-3012.

- [9] MOHSEN S, ABBAS A F, AKIRA K. Microstructural analysis of YSZ and YSZ/Al₂O₃ plasma sprayed thermo barrier coatings after high temperature oxidation[J]. Surface & Coatings Technology, 2008, 202(14): 3233–3238.
- [10] 刘纯波,林 锋,蒋显亮. 热障涂层的研究现状与发展趋势
 [J]. 中国有色金属学报, 2007, 17(1): 1-13.
 LIU Chun-bo, LIN Feng, JIANG Xian-liang. Current state and future development of thermal barrier coating[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(1): 1-13.
- YAN Jian-hui, XU Hong-mei, ZHANG Hou-an. MoSi2 oxidation resistance coatings for Mo₅Si₃/MoSi2 composites[J]. Rare Metals, 2009, 28(4): 418–422.
- [12] 颜建辉,张厚安,徐红梅,吴海江,唐思文.喷涂用 MoSi₂ 粉 末的制备及其在等离子弧中的熔化特性[J].中国有色金属学 报,2011,21(4):836-842.

YAN Jian-hui, ZHANG Hou-an, XU Hong-mei, WU Hai-jiang, TANG Si-wen. Preparation of MoSi₂ powder used for plasma-spraying and its melting characteristics in plasma arc[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(4): 836–842.

- [13] 颜建辉, 张厚安, 李益民, 唐思文. 离子喷涂及真空热处理过 程中 MoSi₂ 涂层的相演变[J]. 焊接学报, 2008, 32(8): 29-33. YAN Jian-hui, ZHANG Hou-an, LI Yi-min, TANG Si-wen. Phases evolution of molybnenum silicide coating in plasma spraying and heat treatment process[J].Transactions of the China Welding Institution, 2008, 32(8): 29-33.
- [14] TOTEMEIER T C, WRIGHT R N, SWANK W D. FeAl and Mo-Si-B intermetallic coatings prepared by thermal spraying[J]. Intermetallics, 2004, 12: 1335–1344.
- [15] 常春,李木森,陈传中,田雷言. MoSi₂高温氧化层的微观 结构[J]. 金属学报, 2003, 39(2): 126-130.
 CHANG Chun, LI Mu-shen, CHEN Chuan-zhong, TIAN Lei-yan. Microstructure of high-temperature oxidation layer of molybdenum disilicide[J]. Acta Metallrugica Sinica, 2003, 39(2): 126-130.

(编辑 李艳红)