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Effects of Zn additions and aging process on
microstructure and mechanical properties of 2056 aluminum alloy

LUO Xian-fu, ZHENG Zi-qiao, GE Jing-xuan, ZHANG Hai-feng, ZHONG Jing, LIAO Zhong-quan
(School of Materials Science and Engineering, Central South University, Changsha 410083, China)

Abstract: The effects of Zn additions and aging process on the microstructure and mechanical properties of 2056
aluminum alloy were investigated by micro-hardness test, tensile test, differential scanning calorimetry (DSC) and
transmission electron microscopy (TEM). The results show that the tensile strength (o) and yield strength (oy,) of 2056
aluminum alloy are higher than those of the alloy without Zn while the elongation is almost the same in T6, T8 and T3
temper. This is because with the addition of Zn, Zn-rich clusters form, which accelerates the precipitation of GPB zone
and the precipitation of S" phase further, thus improving the strength of the alloy. The order of o, and ¢y, of 2056
aluminum alloy in T3, peak-aged T6 and T8 temper from large to small is T8, T3 and T6. The predeformation before
aging makes plenty of dislocations form. Due to the strong interaction between the solute atoms and dislocations, there
exists large quantity of dislocation pile-up while dislocations become tangled up, which improve the strength in T3
temper. In T8 temper, the dislocations become the precipitation sites of S’ phase, making fine, dense and uniform S’ phase
in the matrix. The strength of the alloy in T8 temper improves a lot compared with that of T6 and T3 temper.
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Table 1 Chemical compositions of aluminum alloys land 2
(mass fraction, %)
Alloy No. Cu Mg Mn Si Fe Zn Al
1 (2056 alloy) 3.98 1.16 0.30 <0.01 0.05 0.76 Bal.

2(2056alloy. 3 60 116 031 <001 001 - Bal
Zn-free)

T J55 A AE MTK1000A S 5 v k47, 2
H1.96 N, H#IF ] R 15 so SR bk WARoRE L
J7 I AEBCHUIN L ACIRAE . FRERIAICRE R 30 mm, 55
J& 4 8 mm, 3K H] MTS—858 I HLHEAT Hr A P BEIL,
PN 2 mm/min. A Universal V4.1-TA Z$hy
M GHAT ZE AT, THEGE A 10 K/min, FHif o [l
K 50~450 C; KEHUSEEG A 4 K S FE(Z 10 mg)
HEAT DSC 4387 o 5 HUBERLEERT: ity 2 WL T8I i XX
W2 ST, HOARROR AT ECh 25%HIR AT 75%
RERGW, RHWBEAH, WRET-20C. BMAN
M EAE TECNAIG 20 FB% AT, s v Rk 200 KV

2 FHRE55

2.1 FI3IEE{L Bk

LR 64 1R 2 46 T6 Al T8 2% 1 I 25 figh
fei2k, 1 h AREEEAAE 2k UL 1(b). A ik mT
LB, 75 T6 Fl T8 B4 R, Pifh& G I AH
LRI AL A SR I O R R B, B 4211
T FEE AL T 1 0, 38 B X3 6 (T6) 2 1 %
IR(TR), TJEREARFEAR, ERANFOLFE N
—ANEREWAE, A Zn (G4 1 R N
P, BEERAEROR . 4 T8 AbER, PIFhG 4
FEAAXS T T6 2 HBAF B

22 EHALHIEEE

x 2 FIHAERA GAERRES S HEK+TIARTE L
Je T6. T8 WERRUA T3 & FbrfhiEae. ik 2 77
A, [FIFPERCIRE T, A4 1 FIPTRIERE (o) M S IR
JE (oo ) ILEAT Zn &4 2 M, HE KR O)H
EARK. WRAEAE To. T8 WG T3 & RN o,
Al oo, BHREVNEIF A T8 T3+ T6, 6 HKE/ME



22 BH 9 M PO, % Zn G R KIRCT E% 2056 4 A O AT VR S e K R 2479
MUY RT3 T6 T8, Al ML, FALTE AT LLER 5 < 9T
180 © PO AR IROREE,  HARIN R8CAT LA 5 < R 28 1
a a
1701
160k 2.3 DSCH#

S 150F B2 17 A KA SR I &< ) DSCIthZe. K2t

Z ol T8 A T AT I, WA P T A

Q

5 Lol R, thEI2ATAL, iR 24 BATAIBODSCHli:

o]

2 Lol - T8, alloy 1 g T RN T 53 3156 1 GPBIX (1T ORI AR
ol reads A TR H U TV 4 3056k % GPB IL/S™ K 1 47 £ il
oolt e VR, HCHIE VR V43 556 IS +-SAH O B L A

0 2000 4000 6000 8000 10000 e 8 - .
. EROL. T, ZnlU A 5 0T R4
- S, (L0 oty | ROSUART U RO TR 2 2210
1450 (®) AT o
140 .

= 135F o

£ 130} 0.5 \%

g15— 0.4F

s 120 =

T ® 3| As-quenched, alloy 1
115F =—Tg, alloy 1 = ’
110k *— T8, alloy2 =

4—TE6, alloy 1 % 0.2k
105} v—T6, alloy2 =
0 10 20 30 40 50 60 S 01 _As-quenched, alloy 2
Aging time/min o I

1 e U2 (RO N2 P A 4 1 h I 2 or T e

ﬁg'f’tlﬂ]gf _01 1 1 L L 1 1 1 1

Fig. 1 Aging hardening curves of alloys 1 and 2 (a) and aging 0 50 100 150 200 250 0300 350 400 450
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Table 2 Mechanical properties of aluminum alloys 1 and 2
under condition of as-quenched, as-quenched+ pre-deformation,
T6, T8 and T3

Alloy No.  Aging condition oy/MPa o,/MPa /%
Quenched 321 230 32.9
T6 peak-aging 445 337 20.4
0 -
T3 470 382 23.4
T8 peak-aging 502 420 12.8
Quenched 315 222 35.0
5 (2056 T6 peak-aging 431 327 21.6
a(lloy, Qu::;gfi:z’fre' 370 243 282
Zn-free)
T3 448 367 24.6
T8 peak-aging 481 406 13.6
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Fig. 2 DSC curves of alloys 1 and 2 in as-quenched condition
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Fig. 3 TEM images of alloys 1 and 2 in as-quenched conditions: (a), (¢) Alloy 1; (b), (d) Alloy 2
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Fig. 4 TEM images and SAED patterns of alloys 1 and 2 in T6 temper: (a) Alloy 1 under-aging(4 h) from (001),; (b) Alloy 2

under-aging(4 h) from (001),; (c) Alloy 1 peak-aging(23 h) from (001),; (d) Alloy 2 peak-aging(25 h) from (001),; (¢) Alloy 1
over-aging(80 h) from (112),; (f) Alloy 2 over-aging(80 h)
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Fig. 5 TEM images and SAED patterns of alloys 1and 2 in T8 temper: (a) Alloy 1 under-aging(5 h) from (001),; (b) Alloy 2
under-aging(5 h) from (001),; (c) Alloy 1 peak-aging(70 h) from (001),; (d) Alloy 2 peak-aging(70 h) from (001),; (e) Alloy 1
over-aging(150 h) from (112),; (f) Alloy 2 over-aging(150 h) from (112),
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Fig. 6 TEM images and SAED patterns of alloys 1 and 2 in
T3 temper: (a) Alloy 1 aging (30 d) from (001),; (b) Alloy 2
aging (30 d) from (001),,
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Table 3  Solute-vacancy binding energies in Al-based alloy

Solute-vacancy pair Measured binding energy/eV

Cu-V 0.020121 o831 0,050

Zn-V 0.0301% 0.020% 0,104

Mg-V 0.0415) 01911314
Zn-Mg-V 0.06!"!

R4 TCORARE I APV B AN TR TR TR R st
Table 4 Free enthalpy between solute and different solvents

in infinite dilution solid solution'®

Free enthalpy/(kJ-mol ")

Solute

Al Cu Mg Zn
Al - —34 -7 2
Cu —28 - -15 —14
Mg -8 -20 - -15
Zn 2 —-16 -13 -
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