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Simulation of macrosegregation and
solidification microstructure evolution for
Al-Si alloy by coupled cellular automaton—finite volume model
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Abstract: A coupled cellular automaton—finite volume (CA—FV) model for macroscopic fluid flow, heat transfer, solute
transport and microscopic nucleation and grain growth procedure was developed and applied in an Al-Si binary alloy
solidification process. The model reflects the dendrite growth kinetics in the presence of fluid flow, the nucleation and
growth in CA scale due to the increase of undercooling, and the feedback of solid fraction and temperature to FV nodes
due to the nucleation and growth. The coupled CA—FV model can predict the recalescence and the intergranular
segregation during alloy solidification process, which shows great advantages compared with the results by FV model and
CA-FV model without fluid flow. The effects of fluid flow on the solute distribution and the solidification morphologies,
as well as the influence of ingot size on the solidification structures, were discussed with the CA—FV model.

Key words: Al-Si alloy; solidification; grain growth; macrosegregation; cellular automaton—finite volume method

TR R KRR R (e AR W IEROE R B BER)FES MRS %
2 MART AT MIFHR S WD SRS TR AR TGN R RON AL AN K R

EEWE. EF [RFEIEE T 47 H (50834000); 142 Be 4 BHOIM S 4l % B30 H (BOT015); v sk mik SEAEHIF I 25 2 % BTG H (N100409004);
T4 BAREE A B I E (20072033)

WimBHEA: 2011-07-08; EITEHHA: 2011-11-18

BIEEE. skaflh, BIZEZ, 1 Mif: 024-83684941; E-mail: hongweizhang@epm.neu.edu.cn



1884 A G EE R

2012 4E7 H

FIHSE S, T POV P AZ AN 2 KRR LR A e it ke
R R RS 2 WA I oy A, BRI, A b K
WAL R SO AZ AR KO A S, f, Tl T
PRI BOCFRERY , SRAT B AT -Br S il ] ol i P ASE A0 4
SIIR G e [ AN R R FIUI A ], AT RS T B 4
il ot B4 i R P

BENNON I INCROPERAM# 7 T 23 N ¢
B a LA R WAL,  ABOUTALEBI %
W ZASIR N T RS I RE T, L T A A A
USRI ALY, BRI T J7 IR B R Py
TR TR e o0 A e % AR AT . S, AR R
fla S L7458 YANG %558 1R Scheil £24Y,
TR AR . AR B A A B R R I AR 43
SIS REAT 79

TEARZAR IR 5 Ay Wk 1) T A B AR R0 3% 8 FE A% AR L,
M (PR 2R e — I e v B T W () A T A . ISR TE
K% (OLDFIELDY!, RAPPAZPNIA by JEAZ %5 Ji it
A FE TR 8200 A BR AL s T 40 A1), A 18 TR
R v B (RS R AZ I 2, H T Cbie) 72 i
I T g A A K AR L

FE AR KB D) 2E ST T T BUE K4 A T,
WA AWK, LR AR h¥%E R
JACKSON Al HUNT #5740, il i A o A= K 5 g 2
WK KGT FM, e e Az, GANDIN
SEIPHR W T W B 2 i A K B Iy R
(GGAN #Fi7),

XJ gt [ 20 23 JE AT B 5k 5 Cellular
automaton(CA, JC/fi HBh#1)7%. Monte Carlo(MC)ik
A1 Phase field(PF, tHi)ik. tHIgik)E TafiEisl, ne
g gt [ e R O R R S A% B KRR S
oK. AR P 5| N AR B EOR X A AR EX,
WG T ERERAH SO A . A TR R TR A
FPA A D) IR IS EAE R, KA R il
JE . W T R AR, AT G R
I R AT FLSR IR, I BE O35 AT S s e [ L 7
R OCRAL R KAl . AR, 2%
PERRAED, B RSFEN . CA 8 MC VEJE T BENLI
R, BEAEAGBE I FE I RE ey B S T AR AR R A
ghfy, LR ERER RS R 8, T I
R PTG R S S5 T R e A . b, MC VT
FTHT B I /N, AR S T e P SO B BT R IR
SETAERVAERAT S, 570 3 EAR e ] A ) % J B
B Z 6 SR A K S S L RS, LR K
W S BREE R I TESE. T CA BRI & T 7 A%
FE KRR 3P . RAPPAZ I GANDIN!

RN T AR CA FER, BRI A% A TR
s A% IR 45 S R BEATLA 8, 8 5 IR R A KB
FIRR A KR VPR, nTBR L
. ZHU R HONGM HE— 20 #5777 300 B2 ()
CA AL, 58T [ 3 T ORI P 40 1
ST A it B 2B K AT A

TR AR R 7 SO RE el e, Efliid
TS R TRD 90 B P R 0 S s S SO R, 0
TR SR A P O AR AT HE R . AL E
1 Gulliver-Scheil(GS)ZA! 1L BRI BRI L, AT
FEE AR IR RER, A IEl . AR R 8
GS RN 15 58 ¥ A VRO 78 439 O [ AH JEd H.
SRR B T X R B L2 1F], Ak, BRODY
A FLEMINGS!"", OHNAKA!", KOBAYASHI"™, NI
H BECKERMANN®" ;. GANDIN 22143 5l et %of 1] 4]
Y B T RIS IEAS,

BB AR R TR Y 5 7o i F 3L
AL AR &, 455 F0FFEH, GUILLEMOT
2Byt po-Sn Al Ga-In 5 ikt [ i REEAT T 45540,
ARAS AR AT TR IR R g S i 4 W) A5 5 o

ASCAEHERT ALST n A et R, s
TSN AEFFNAS AR i 5 AOW T AZ A AR K R L)
FAGBEY, SRHATAF R A R S5 R ]
AP RIAIIMOTIK R, H CA BTN AL-Si A 44
f AR R o ST R R P R O R AT RN
A SR AR TR, I BT R Bl S 1 RS
B IR AT LA B B ] 20 2OV 3 A T R

BEXE AL-SE —otrdr, RSB AL 200
WA AERFNE ALY, R CA BB GO
JERANAERGTRE, AT AT e RO S H 4
i, SEBXUA RS o

1.1 EWEREFER

R Tan MERR DTS it Ak [ e A4
Fr 2N ARTRAS Z B R R s 2) /0 B AN RT 4i11
LRIRAR, 54 Boussinesq J< % BB A1 3)
P ] P I R FS R o, SR T 4)
FTWEE IR R IS TEAR R, RIS ARIAIAFAE, 5850
IR AR 738, KA RS 5) &<l
TR B AH [R]85 B2 (p) R E s LE AR (c,)s SR E (1)
UL R, WO HURE(D) A H L 6)BE R



F22 % T

PUREIR A K7 sRHE T, I 28 FL B A i o
L1 S itk b e

apuy) _

0
— + 0 1
p (p) o, (1
o o pugu,)
= (pu)+ =L =
ot ox;

d 0 du;  Ou,; Hy

-t —+—) |- (w; —u, )+ pB (2
aXi axj |:/ul(ax] aXi ) Kp (uz us,z) PDb; ( )

Wy U5 1 AR R T —pglBr(T-Tregt
Bowviweels AKTT AR 0. K4 Kozeny-
Carman 230, B0 R, BB R0 KRN

3
K, =K, ) flf)z C SN RN BL, Ky BB R A
-1
B, I AR R R . A SE A B X
(=0 FIBATIX (fi=1), ¥BIBHR 0K K,~0 Rl K=o,

a(pH)+8(pujH): 0 Ky OH

)+
ot ox;  Ox; o, Ox;
0 Ky O 0
O O - 1=t~y )y - HY )
ox; ¢, Ox; ox;

b AR AEEO [ BATFTIR G cea=rafitredio

Apw) | o(pu;w) 8 ow

— —) +
ot ox axj( s“axj)
0 0 0
gj[reff gj(wl —W)]—gj[P(uj —ug ;)W —w)] (4)

A w R SR 2GR AHY 1L, A8
FH =fpDio
112 B TARA NI B2 55 Ui S i AH 70 2 (R 2 4 00 R
8 AH F T AL DR R SR s BTy 1, X I ANHEBRAH
TR A AERE T, H 20 T o iR 2 A A
(RIRH T o RIS BN AT, 2008 B 2y it 2,
AT A3 BUAT AT & R R B T RS A JE 5 d 58 R [T A
IR R
TOE BT 2 RS R FE 730 o H R w, 4324
PLUR JUM S BTS2 BT IR B T R AH 4322 £
1) FITAHAH
T=(H-AH ), (5a)

£=0 (5b)

2) HITAETPIAHIX (f<<1)
%ll_lliq>H>Heut HTJ’ ﬁ

T =[H-AH (1~ f)lc, (62)

TR, 2% ALST A& MAMAT B LSV AR (I A SIHL—E IR RE AL A AL 1885
1 Tijgw)-T
1 . D (6b)
l—kp T,-T

iA/II_Ie:ut>I_I>I_Iso1 HTJ’ ﬁ

7=T, (7a)
fo=1-(H~c,T,)/AH, (7b)

ﬁ EP : }Iqu:Cpniq(W)+A}1f’ HsolchTsol(W) ’ Heut:cpTe+ AI_If
(A~ cw)s S, eu AFEIEFIR L LV TR L w X

WA 7 o WA AR Tliq=Tm+(Te—Tm)i, Il AH
We

LAY Ty =T, + (T ~T,)—— » Ten we Ml w2080
w.

AL-Si 73 A it e AL FSE MU L (18 B0 [ A St
3) BT K A (Hew = H)

I=H/c, (8a)

f=1 (8b)
N5, MO0 B . AR, AR

w
"D v
T B AR
WS
k, = (10)

1.2 BREHELEURHFER
121 JBRAE

SR FH R T AZASE AR O ey S 5 B R 908 P
S3 AT I Sk FE TR A s i A ek 2, A
B I BEAT L E CA PRI B IF S — ISy
A FTeAZ LR . — A CA BT RErE— 3Bl —
ML A . 25, AERERmRE T, Bl ) I
WHE CA BRI I ¥4 2 TA 3112 s POUE FR) Il it 74 B2 I
WAL o D SRR T R DU R AR, B E
in A% B A (—/4 ~ ) T8 — BE HL AT
a =§(ranl—0.5) , ranl Ky O~1 Z [A] (I REHLEL .

122 ks FE SR A K Bl ) P

PRt ATt S 1t eas) ) 7 N 5~ S DL WA
S TR R, B T A, T
W R AR AR B ) B S Al U K A AH L,
RAET BEMSAE . K GGAN BRI T HiA



1886 A G EE R

2012 4E7 H

B ARG VA FEAT R 7R 4 A AT, 5 il %
EAAT, 2 F0:
1 2r

AT=mW0[l—m]+T (11)
BRI 52 K
Q=(w —w)/[w (1-k,)] (12)

Wi TR 54K Peclet #0 Pe, [H] R R,
(GGAN A1) )y

Q= Pe, exp(Pe,)-

4
E,(Pe,)-E,| Pe,(l 13
{ 1(Fe) 1{ o0t ercCsin(H/z))}} (13)

H1 S REE PEMEN, A7

T N S (14)
o mw (k,-1)
P K Peclet £ Pe, = vy, /(2Dy) ;5 ¥il3)) Peclet %1
Pe, =ru/(2D)) ; Reynolds % Re,, =2ru/v=4Pe, /Sc;
Schmidt ¥ Sc=v/D,,v HIEENEE; 55 4=0.5773.
B=0.659 6. C=0.524 9; IREMT KL Ei(Pe,)=
[ 2D ot AT U0 0 b b/
e T

KI7 10 5B 7 M w AT [ A §h A
R TRA R, IX L, BGE WAHEL Sk, 00w B
H A VS R SRl s v, A A A A
B Dy NBAY HAREG REtEEE o @) s m
HWAHZ R %, A Gibbs-Thomson FR%(.

B N(1)~(14), @A R TEBIE A TEAT. W
WBNHEE u KT7mS 6, BImT3 28GR r
I il i A2 KR L v, FOAHL
1.2.3  fitE KAk s 2

W N AR I R, B R S W T

FAHIAIE, FRI A AR XA, A
HE R ETA N AR . AR, Sz

KH B AL . gk, ST ASI PG
KIS 1 BB R R AR

I CA Mg AR IC R m Al ne Forb, mim
NI AR R0 G, FENZI AR
FEE 1 PR TRVE R, WALk
R A AR ERDUIL TR 1) 4 2 it B FEE (VR (10) 7 7))
Ao mn AEPERERAT S el s,

Bl et P g A KA AT

Fig. 1  Two-dimensional decentred quadrilateral growth

algorithm!®”!

ome FITAE R it A8 K 222 el A 5 2 P s D
2, DU R m BRI A KIS 0, 5n B m
PRI R, RS2, TR KA EAE gk
AR m AR R LA AR PR DO e F 4
AN RS . mon BB E S G, IRl
RUTSRARTE N G, A 4 ZBORE K i U/E
P AR B A R AR U S R UL SRR 27

XA JER AT A H BAE B B e A
KA A RR o b T AR DY I T8 ) AN
VU B A A RO 2 i 18 i CA s, RIS
THABORE SR R, FEA B K
AN, HIA B EIANSE, P, e,
Wik T A K B AN DU S B . Xt TR
CA FIURL, FAr il O I R AR B A A2 A iy
B

B 2 o g — B RLAE 2 AL 37 K A H
NAERIES . BOE 1 x BIE VR 0.1 m/s f8)
SJY, AHIREAE-0.1 K/s IV HIHER T 5145
ATRE A Sio] V) K0 A o T S I TR WA SR a2 TS
TUAE H, SARREh R TR A KA FR Y. T
Wish g TR RO SR B AR, Sk
TR WA LI S SR 178

1.3 EWSHM B EiE?
131 0RO B e AR B A LART e 26 2R
7 2D T IR, R FV MRS SO CA



F22 % T FRLCH, A5 AL-Si A A MMAT R L ZUEAR 1 T R A S L I AR A B 1887
132 FWAIBRS A it 51
10 0] 1) PO S
¥ AR — BV IR 6] 25K A 2 KA AR e —
l A CA HIER Y lear AL, BRSSO HEA
J WA SO D 25K, P TR0 S e BT 25Kt
& AF(17):
=,
8t = min(ale, /v, Af) (17)
? Aol o T HIE  EKE E
I . 5 . . 1 {f: a(0<a<1)WFHIBMOWIIAL K SH A W%

— u=0.1m/s X/mm

2 G R AR OBS
Fig. 2 Morphology of single grain growth in presence of fluid

flow

ks, Hoeh, G BV RS SR A R 4 e
FRSF (R RG BO CA PRI Dl 5 )
GRSF EETT MM, RSN S5y, 5 FV
o B ] — R b A PO AR
B LA R R, AT F il 4 A2
BRI 2 FR R nf (=1~4). fE—ANEWHTT F
MO TG v AR ¢, =(r,, ) HE—Tf R
T ALV S MO0 CA T2 MASHS ., 14T
A 15 FUO CA B8 v 2 J8] 5 L — M A
5% e, WA OB LA R R A 2 A
FAHICAT AR £, HEIMO CA T B
AR &,

4 F
&=2.0"¢, (15)
i=1

JZs HPFNOW CA TR RAL & I, 2
R A A S (16) 75 2]

1
arzé%g (16)
Kb N A WL CA BTG v [IAS
L, IS 0 TR TN AT CA B0 4,
N}
I REORIA, 4,= .
i=1
W, o RRAE—A FV BT & A
{ELRT A A CA ot v BAREA A 0Tk T ) /A, &
RN FV HIG n AR RS ST WL CA BT v
A A TR

R[]

2) ZMHICA SR E B ORI T

TSR AR ER TR (D~@) 3] FV A5 4 AR
HLE— NN TR 2D A 3 AR AR (AHL) R EEAR
A (Aw,) R FE AR (Aw;, ) o

X AR B AT IN R EAG MR, AR An AR
ORI [P 8t AL IIARAAE 8H v Sw, FI Suj,
P AS)EAT 2 R ZMEAG A 2OW T S v AR S
PIARAAE SH, v Sw, FIT 81y o

3) AROWL T RO T 5 305 R[] A 43 236 (1)
i

HROUW CA 50 S FAOUL IS 220 I FkS . IR JE(E
H, F1w,, K G)~®) TS i B oc il B T, A AH
I fo o

4) T R ARGOU Y e b AR

W (S)~8) T LA CA HITHT IR EE T,
A > 2 f,, B AR 8 ST, FN 8f; o K252 R[] A
Iy ARG 3T, F1 of,, 1L 2 (16) T S W0t 45 7 WL 1 1t
521 2 T R ER EFN A 23 22 (R AR A AR 8T, F1 8, 0

5) RGO SR g it

% AR IR (1 35 1 S s fi )

SR P ) A5 RARA 2312 B 5 AR i T R (1)~(4),
KA SIMPLE 3240 B ) MR RE RS &, ERUOTSE
ORI O R LA K R fe B T AR i R R R
TOIEITI, 22 ok B ORI . B UG R4
J7 RER HPUE 1E I =0 1 50 FEL(TDMA) AT IE AR
filt, IEXFSALEIAT KA. AR LA R HRbs, 7EfF
AN ZE B TRV S 3~5 IR FR 1 1E 7 R R8I
(I RREEIN) /N T 1X 107 e FE R 25/
T 1X107; WA 2N T 1X10°°,

@7 WA AR A K A

AT, i WAL S T BEAE FV 5 R
VP E IS . BRI >, JFRERIOW CA
ot ke fECA FIt b, H DS IRIETHE BB



1888

A

04 8 2 4 201247 A

UL SE RN 7325 )AL IC I v AR TS B A%
[ AH FL G R v PR AU T S A AR R, AT
BRAF CA FRICIRZS AR (LB i [TAR) AT A

AN AR > o K CA 0 E AU AN A 74 S 5]
FV 4 5ie XHE, AWl IBEAEK, BEEe%5E
Gl o ZOMANOIAR & VSR I RE LK 3.

Macro/Micro time ¢,=t,=0
I

Setting initial values of enthalpy, temperature,
concentration, solid fraction and velocities at FV
t
u'r

t” t” t” L
nodes H,", T, w,, I n» and CA cells

n
s, n>
t, t, t, ot t
Hv ’ Tv ’ Wv ’fs,v’ u_/,v
I

»

At time ¢, +At
I

»

+At
n

. . .. t
Calculating enthalpy H ,i”*A’, concentrations wf;'*A’ and velocities u

at FV nodes by finite volume method, Eqgs. (1)~(4)

[
Determining micro CA time step 6¢, Eq. (17)

Ly

Evolution of nucleation and growth at time interval ¢,~t,+¢ based on N
temperature 7 and velocity ut/v at CA cells, Section 2.2
Calculating increment of temperature and solid fraction o7} O of ;,t”JrBt > = Nucleation,
at CA cells by nucleation and growth, Eq.(6) growth
I = 07T, of;
Feeding back variable increments at CA cells to FV nodes
ST, "™, of\,"™ , Eq. (16) Y
- F -—:f\
Obtaining enthalpy H**, concentration w’** and velocities u_[/-“,;m at time \\
1,10t by linear interpolating in time interval #,~t,+At at FV nodes
I
Obtaining enthalpy H"**, concentration w’** and velocities u[/-f;m at
CA cells by linear interpolation in space, Eq. (15 ' .
Y p| P q- (15 Cooling
. +8 . . 1,48 L+ L+ conditions
Calculating temperature 7, and solid fraction f;** from H}*, w)™ :> —~Hw

I
Updating 07> and 9™ at CA cells

[
Feeding back variable increments o7, §f%*%

CA cells to FV nodes, Eq. (16)
e L SN .

Updating variables 7, and /" at FV nodes

at

&1t,+0t

t, <

Ot 1, A

t, +At

3 CA-FV Ry it Hfife K
Fig. 3 Flow chart of CA—FV coupling algorithm




F22 % T R, % Al-Si B AZEN

&

AT e A LUEAR T 0 I A S AR AR A R 1889

OV S I

BRI f=1 I, THEER

@YIIRAPERIL T4

WIGE AT B E Y u==0, ¥IMHKE
wo=0.07, WIUGIELE T=893 K, WG fi=1,

DSGAE: VUBESS R [ AR RE T, TCREMIEE. X
JERETH AN, 25 5 LU T A8 B A R )
LA 3 ANBETH A0S o A BETRT BIRFERAIE N 0,

2 HERIHE

K ZAHORAE SR, AAT4 0 Fortran 72
J¥ 5 BEXT AL-7%Si0T 1 73300 £ 4 1A e [ aok R A T 400
Biftl.  Al-7%Si A4 1 FZDES BRI 25050
W 1 A2 Pral. tFEXERGT N 30 mm X 30 mm,

1 AR F AL-7%Si &IPS ERT S5
Table 1 Physical properties of Al-7%Si alloy and calculation

parameters in FV model

Parameter Value

Specific heat capacity, c,/(J-kg "K™") 1 060

Thermal conductivity, ©=233-0.110T

K/(W-m K 1=36.5+0.028T
Diffusion coet;g;i(:ll; ;1”1 )S.i in liquid Al, 6.45% 10~
Partition coefficient, k, 0.13
Density, p/(kg'm ) 2452.5
Dynamic viscosity, x/(Pa-s) 138X 107
Latent heat of fusion, AH/(J’kg ") 387 400
Thermal expansion coefficient, S7/K 1x107*
Solute expansion coefficient, S —4.0%X107*
Melting temperature of pure Al, 7,,/K 933.37
Liquidus temperature, Tj/K 887.05
Eutectic temperature, 7/K 850
Reference temperature, 7;./K 893
Initial composition of alloy, wy 0.07
Eutectic composition in liquid, w, 0.126
Eutectic composition in solid, W, 0.014 8
Reference composition, ws 0.07
Permeability coefficient, Kym? 5.56X 10711
Cooling rate in terms 0{ ?nElllalpy at left wall, 4000
h/(Jkg s )
Macro FV time step, At/s 0.002
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Table 2 Physical properties of Al-7%Si alloy and calculation
parameters in CA model

Parameter Value
Liquidus slope, m/K —650
Gibbs-Thomson coefficient, I7(K-m) 1.96xX 107
Stability constant, ¢~ 0.0253
Schmidt number, S¢ 90.6
Nucleation density at surface, ng/m’! 9.6X10°
Nucleation density in bulk, 7,/m 2 1.5X10°
Maximum nucleation undercooling in bulk, 6.0
AT, max/K ’
Maximum nucleation undercooling at surface, 1.0
AT, ma/K ’
Standard deviation in bulk, AT, ,/K 0.1
Standard deviation at surface, AT, /K 0.1
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