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C/C 复合材料表面原位生长 SiCw 的工艺 

李 军 1, 2 ，谭周建 1 ，廖寄乔 1, 2 ，张 翔 1 ，李丙菊 1 

(1. 中南大学 粉末冶金国家重点实验室，长沙  410083； 

2. 湖南金博复合材料科技有限公司，益阳  413000) 

摘 要：以三氯甲基硅烷(CH3SiCl3, MTS)为先驱体原料，采用化学气相沉积法在 C/C复合材料基体上原位生长碳 

化硅晶须，研究稀释气体流量、催化剂以及沉积温度对碳化硅晶须生长的影响。结果表明：有催化剂存在时可以 

制备具有较高长径比的 SiCw，无催化剂制备的 SiC主要以短棒状或球状 SiC为主；随着稀释气体流量或者沉积温 

度的增加，SiCw 的产率是先增加、后减少，在 1 100℃、载气和稀释气体流量均为 100 mL/min时，制备的碳化硅 

晶须的产率最高，晶须质量最好。 
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Technology of in­situ growing SiCw on surface of C/C composites 
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Abstract: The  silicon  carbide whiskers were  deposited  on C/C composites  by  chemical  vapor  deposition  (CVD) with 
methyltrichlorosilane (MTS) as the precursor. The effects of dilute gas flow, catalyst and deposition temperature on the 
growth of silicon carbide whiskers were  investigated. The results  show  that silicon carbide whiskers (SiCw) with high 
length­diameter ratio are obtained when there is catalyst, but cosh­like or globular­like silicon carbides are got without 
catalyst, and with the increase of deposition temperature or the dilute gas flow, the yield of SiCw firstly increases and then 
decreases,  and  the  highest  yield  and  high  quality  of  silicon  carbide  whiskers  are  obtained  under  the  conditions  as: 
deposition temperature of 1 100℃ and flow of carry gas and dilute gas both for 100 mL/min. 
Key words: SiC whiskers; C/C composites; dilute gas flow; catalyst; deposition temperature 

碳化硅晶须是一种直径为纳米级至微米级的单晶 

纤维，具有高强度、高硬度、高弹性模量及低密度、 

耐腐蚀、稳定的化学性质、强抗高温氧化能力等优良 

特性，在制备高温金属基、陶瓷基复合材料中得到广 

泛的应用 [1−5] 。SiC 晶须增强陶瓷基复合材料始于  20 
世纪 90年代， WANG等 [3] 对 SiC晶须的氮化硅基复合 

材料中晶须取向的研究表明，当晶须方向基本一致且 

晶须与基体界面弱连接时，此方向中的断裂韧性具有 

极大值， 抗折强度和断裂韧性分别为1 038 MPa和10.7 
MPa∙m 1/2 ；YE等 [4] 用 SiC晶须增强氧化铝的实验研究 

表明，当 SiC 晶须的体积分数为 20%时，SiCw/Al2O3 

复合材料的弯曲强度达  508  MPa，断裂韧性为  8.78 
MPa∙m 1/2 ，比纯铝的断裂韧性提高了近一倍。近年来， 

为解决碳/碳(C/C)复合材料高温抗氧化涂层容易开裂 

的问题，碳化硅晶须被作为增韧材料用于高温抗氧化 

涂层的制备中 [6−8] ，取得了一定的效果，但是，由于碳 
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化硅晶须是通过人工的方式掺杂进入涂层体系的，晶 

须的分散均匀性难以保证，同时，这种掺杂碳化硅晶 

须增韧涂层只能单方面地提高涂层自身的抗氧化能 

力，而在改善涂层和 C/C基体之间的热膨胀性能不匹 

配方面没有任何作用，而后者往往才是导致涂层破坏 

的关键。研究表明 [9−12] ，如果晶须和基体相互交织缠 

结在一起，不仅可提高晶须和基体的层间剪切强度， 

而且可以缓冲或阻止涂层内部裂纹的扩散。因此，有 

必要系统地研究 C/C 复合材料表面原位生长  SiCw 的 

生长工艺，包括稀释气体流量、催化剂以及沉积温度 

对 CVD  SiCw 的影响。到目前为止尚未见到系统研究 
C/C复合材料表面原位生长 SiCw 的文献报道。因此， 

有必要开展相关的研究， 同时也为制备 SiCw 增韧的高 

温抗氧化涂层工作开展基础性研究。在本研究中，本 

文作者在 C/C复合材料基体上原位生长 SiCw， 目的是 

在 C/C基体和碳化硅涂层之间制备一层碳化硅晶须过 

渡层，使其作为基体和 SiC 涂层之间的缓冲带，一方 

面提高涂层和基体的结合强度，一方面利用晶须的拔 

出桥连与裂纹转向机制降低涂层中的裂纹尺寸和数 

量， 从而达到提高涂层的防氧化性能和热震性能目的。 

1  实验 

1.1  样品制备 

所用沉积基体为 C/C复合材料，由湖南金博复合 

材料科技有限公司生产，其密度为 1.6 g/cm 3 ，试样尺 

寸为 15 mm×10 mm×5 mm，试样用 600号碳化硅砂 

纸打磨，再用超声波清洗后烘干，然后把样品分为两 

组，一组样品不作处理待用；另一组样品表面加载 
Ni­La­Al催化剂，催化剂的加载方法见文献[13−15]。 
SiC  晶须的制备工艺为以三氯甲基硅烷(CH3SiCl3, 
MTS)为先驱体原料，H2 用作载气和稀释气体，采用 

质量流量控制器(S49−33/MT)控制气体流量，通过鼓 

泡法把 MTS带入反应室，载气流量为 100  mL/min， 

稀释气体的变化范围为 50~200  mL/min，沉积温度范 

围为 1 000~1 150℃，压力为常压。 

1.2  性能表征 

通过扫描电镜(SEM，JSM−6360LV)观察  SiCw 的 

微观形貌，X射线能谱仪(EDS，  EDX­GENESIS 60S 
型)分析晶须成分。由于试样尺寸相同，以试样的质量 

增加率(w)来表征 SiCw 的产率，w的计算公式如下： 

1 0 

0 
100% 

m m 
w 

m 
− 

= ×  (1) 

式中：m0 和  m1 分别为试样沉积前和沉积后的质量， 

用灵敏度为±0.1 mg 的电子天平称量试样质量。 

2  结果与讨论 

2.1  稀释气体流量对 CVD SiCw 的影响 

固定载气(H2)流量为  100  mL/min，沉积温度为 
1 100℃，压力为常压，沉积时间为 3 h，以 H2 为稀释 

气体，气体流量分别为 50、100、150和 200 mL/min， 

研究不同稀释气体流量对 CVD SiCw 的影响。 
2.1.1 稀释气体流量对 SiC晶须的产率的影响 

图  1 所示为稀释气体流量分别为  50、100、150 
和 200 mL/min时试样的质量增加率曲线。 

图 1  不同稀释气体流量下 CVD SiCw 的质量增加率曲线 

Fig.  1  Mass  gain  rate  curve  of  CVD SiCw  at different  flow 

rates of dilute gas 

从图 1中可以得出，SiCw 产率与稀释气体流量不 

是成简单的线性关系，而是先增加，后减少。研究认 

为 [16−17] ，增大稀释气体流量，会降低反应表面气体的 

温度，造成沉积速度下降。在  CVD 制备碳化硅时， 

一般以 Ar 或者 H2 为稀释气体时，但是 H2 和 Ar在作 

为稀释气体时，两者在 CVD过程中所起的作用不同。 

Ar 不参与反应，其作用主要是平衡反应区的温度差， 

通过调节其流量而使试样沉积更均匀，所以  Ar 的影 

响比较单一。相对而言，H2 在 CVD 过程中所起的作 

用就比较复杂，H2  参与反应的事实已经被很多研 

究 [16, 18] 证明。 当 H2 流量比较小时， H2 参与反应对 SiCw 

产率的影响是主要的，对反应表面温度的影响是次要 

的，所以这个阶段随着  H2 流量的增加，SiCw 产率迅 

速增加，图 1中 H2 流量为 100 mL/min 时的质量增加
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率几乎是 50 mL/min时的 3倍。但是，随着 H2 流量的 

增加，对反应表面温度的影响逐渐增大，导致了碳化 

硅产率下降。总之，以 H2 为稀释气体制备 SiCw 时， 

需要考虑 H2 对反应有利和不利的因素。在本研究中， 
H2 流量为 100 mL/min 时，SiCw 的产率最高。 
2.1.2  稀释气体流量对 SiCw 微观形貌的影响 

图 2 所示为 H2 流量分别为 50、100、150 和 200 
mL/min时试样表面碳化硅的微观形貌。 从图 2中可以 

看出，当 H2 流量为 50 mL/min 时，并不能获得 SiCw； 

只有当 H2 流量大于等于 100 mL/min 时，才能完全获 

得 SiCw。 

在 CVD过程中，H2/MTS的分解产物包括 CH3、 
SiCl3、SiCl2、CH4、HCl、SiCl4，其中 CH3、SiCl3 是 
SiC 生成的基础，CH4、SiCl4 是二次反应的产物，一 

般认为不参与表面反应 [19] 。SiCI2 易于吸附在反应表 

面，当有 H2 时能进一步反应生成 Si 和 HCl。在本研 

究中，当 H2 流量为 50  mL/min 时，H2 的流量不足以 

满足与 SiCl2 反应的要求， 导致在反应初期生成的碳化 

硅晶体表面掺杂了部分 SiCl2， 阻碍了碳化硅晶体定向 

生长成为 SiC晶须。只有增加 H2 流量，才有利于满足 

与 SiCl2 反应的要求， 碳化硅晶体才能有连续生长成为 
SiCw 的条件。所以当氢气流量大于等于  100  mL/min 
时，均能生成 SiCw。 

2.2  催化剂对 CVD SiCw 的影响 

根据  2.1 节的分析，在其它条件不变的情况下， 

载气和稀释气体流量均为 100 mL/min时为 SiCw 的最 

佳制备工艺。在此工艺下，研究催化剂对  CVD 制备 
SiCw 的影响。图 3所示为表面加载有催化剂的样品和 

表面未作处理的样品化学气相沉积 1  h 后样品表面的 

微观形貌和元素分析谱。 

从图 3 中可以看出，有催化剂制备的碳化硅是有 

较高的长径比的 SiCw，相比而言，无催化剂制备的碳 

化硅主要以短棒状或球状 SiC 为主。在 CVD  SiCw 的 

过程中，SiCw 主要通过气−液−固(V­L­S)机理生成，催 

化剂的作用体现在：一方面，催化剂可与反应体系中 

的其它组分(主要 MTS 分解产生的 CH3 和 SiCl3)在较 

低的温度下形成低共熔液相，这对 CH3 和  SiCl3 分解 

产生的〈C〉和〈Si〉是有利的，当分解产生的〈C〉和〈Si〉达 

到一定过饱和度时，开始形成 SiC 晶核并析出在液体 

与基体的界面上，随着原料的持续供给，SiC 晶核沿 

一维方向连续生长生成 SiCw。同时，这种溶解析出的 

生长机制相应地减少了无液相催化剂存在部位 SiC 的 

成核与长大，从而降低碳化硅颗粒出现的几率；另一 

方面，催化剂的使用能够降低反应的活化能，加速中 

间相原料 CH3 和 SiCl3 的生成和分解，从而加快 SiCw 

图 2  不同稀释气体流量下 CVD SiCw 的微观形貌 

Fig. 2  Morphologies of CVD SiCw  at different dilute gas flow  rates: (a) 50 mL/min; (b) 100 mL/min; (c) 150 mL/min; (d) 200 

mL/min
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图 3  加催化剂和无催化剂制备的 SiCw 的微观形貌和元素分析 

Fig. 3  Micrographs((a), (c)) and surface EDS analyses((b), (d)) of SiCw obtained with((a, (b)) and without ((c), (d)) catalyst 

的沉积速率。当 SiC 达到饱和时析出碳化硅晶核，在 

催化剂的作用下沿着液−固界面的轴向连续、均匀的 

生长，因此得到的 SiCw 表面光滑，形貌好。 

2.3  沉积温度对 CVD SiCw 的影响 

根据 2.1节和 2.2节的研究结果， 在固定载气和稀 

释气体流量均为 100 mL/min、有催化剂存在时，重点 

研究沉积温度对 CVD SiCw 的影响。 

图 4所示为沉积温度分别为 1 000、1 050、1 100、 
1 150℃沉积时间为 1 h 时试样的质量增加率的曲线。 

从图 4中可以得出，SiCw 的产率与沉积温度不是 

成简单的线性关系，而是先增加、后减少，拐点是 
1 100 ℃。热力学分析表明 [20] ：由MTS分解沉积 SiC 
涂层，一般在 900~1600℃进行，在较低的温度，沉积 

速率受表面反应限制，当温度增高时，表面反应速率 

以指数升高，所以，物质传递会成为控制因素。图  4 
中在 1  000~1  100 ℃，沉积速率与温度之间呈很好的 

线性关系，说明沉积过程主要受表面反应控制，在 
1 100~1 150℃， 随着沉积温度的升高， 沉积速率下降， 

说明当温度大于等于 1 100℃时，CVD过程的控制因 

素发生了变化，刘荣军等 [20−21] 的研究表明，在 1 000~ 

图 4  不同沉积温度 CVD SiCw 的质量增加率曲线 

Fig.  4  Mass  gain  rate  curve  of  CVD  SiCw  at  different 

deposition temperatures 

1 300℃，随着温度的升高，SiC的沉积速率是逐渐增 

大的，且当温度大于等于 1 150℃时，SiC的沉积速率 

迅速增大。而在本研究中，1 150℃时，SiC的沉积速 

率相对 1 100 ℃是下降的，这可能是催化剂影响造成 

的，前面催化剂对 CVD SiCw 的影响的研究结果表明， 

催化剂能加速中间相原料CH3 和 SiCl3 的生成和分解，
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在本研究中，当温度大于等于 1 100℃时，由于MTS 
分解过快，造成催化剂被包覆失去活性，导致 SiC 沉 

积速率下降， 虽然温度的升高能增大 SiC的沉积速率， 

但是增加作用没有催化剂的作用明显， 所以，1 150℃ 

时 SiC 沉积速率下降。且实验过程中发现，随着温度 

的升高，基体表面沉积的 SiC 的颜色逐渐由银白色变 

成黑色。制备的 SiC的微观形貌差异很大。 

图 5~8所示分别为 1 000、1 050、1 100、1 150℃ 

沉积时间为  1  h 制备的  SiCw 的微观形貌和元素分析 

结果。 

从图 5~8中可以看出，1  000 ℃时只有极少量的 
SiCw 生成，C/C 基体表面分布有许多催化剂颗粒，B 
点的 EDS结果表明催化剂颗粒表面有少量 SiC生成， 

可能因为浓度不足没有定向生成  SiCw；1  050  ℃及 
1 100℃时， C/C基体表面被浓密的SiCw 覆盖； 1 150℃ 

时，C/C  基体表面主要是  SiC  颗粒及少量短棒状的 
SiC。 

化学气相沉积法制备SiCw 的机理主要是V­L­S机 

理，且催化剂在整个过程中起着关键的作用。在 1 000 
℃时，由于温度低，MTS分解缓慢，只生成了很少量 

图 5  沉积温度为 1 000℃制备的 SiCw 的表面形貌和元素分析 

Fig. 5  Surface micrographs((a), (b)) and EDS analyses((c), (d)) of SiCw at deposition temperature of 1 000℃ 

图 6  沉积温度为 1 050℃制备的 SiCw 的表面形貌和元素分析 

Fig. 6  Surface micrograph and surface EDS analyses of SiCw at deposition temperature of 1 050℃



中国有色金属学报  2012 年 2 月 432 

图 7  沉积温度为 1 100℃制备的 SiCw 的表面形貌和元素分析 

Fig. 7  Surface micrograph and surface EDS analyses of SiCw at deposition temperature of 1 100℃ 

图 8  沉积温度为 1 150℃制备的 SiCw 的表面形貌和元素分析 

Fig. 8  Surface micrograph and surface EDS analyses of SiCw at deposition temperature of 1 150℃ 

的 SiCw， 当温度升高到 1 050℃时， 大量的 SiCw 生成； 

在 1 100℃时， MTS的分解速度与 SiCw 的生长速度达 

到一致，此时 SiCw 的产率最高；随着温度的进一步升 

高，MTS分解过剩，导致催化剂表面被过多的分解产 

物覆盖，失去活性，SiCw 的定向生长受到影响，形成 

了颗粒状和短棒状碳化硅。综上所述，在本研究中， 
1 100℃是制备 SiCw 的最佳温度。 

3  结论 

1) SiCw 的产率随稀释气体流量的增加先增加、后 

减少，当稀释气体流量为 100  mL/min 时，SiCw 的产 

率最高，且只有当稀释气体流量大于等于 100 mL/min 
时，才能完全获得 SiCw。 

2) 有催化剂能制备有较高长径比的  SiCw，无催 

化剂制备的 SiC主要以短棒状或球状 SiC为主。 
3)  SiCw 的产率随沉积温度的增加先增加、后减 

少，拐点是 1 100℃。1 000℃时，只有极少量的 SiCw 

生成，C/C基体表面分布有许多催化剂颗粒；1 050℃ 

及 1 100℃时， C/C基体表面被浓密的 SiCw 覆盖； 1 150 
℃时，C/C 基体表面主要生成颗粒状和短棒状  SiC， 
1 100℃是制备 SiCw 的最佳温度。 
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