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Abstract: The finite element analysis software based on explicit dynamic method was applied to the topology
optimization of aluminum bumper using hybrid cellular automata (HCA) as an optimizing model. The results of topology
optimization show that the simulated annealing method can be used for the optimization design of the bumper thickness,
and the thin-walled, hollow aluminum bumper with reinforced ribs is obtained. The original steel bumper was replaced by
6061 aluminum alloy. Both the car crash simulation and experiment were performed. The results indicate that the mass of
aluminum bumper is 25% lighter than that of the original steel bumper. The aluminum bumper has higher flexural
strength than the original steel bumper. At the same time, the crash energy absorption of the aluminum bumper system is
45.6% higher than that of the original steel bumper system in low-speed collision.
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Table 1 Johnson-Cook material model constitutive parameters

of bumper
Material A/MPa B/MPa C n
Steel 115.26 232.56  0.1323  0.483
6061 aluminum 69.52 106.99 0.0906 0.373
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Fig. 1 Deformation modes of front bumper: (a) Bending;

(b) Section deformation
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Fig. 3 Topology optimization models of aluminum bumper:
(a) Rigid wall model; (b) Rigid pole model
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Fig. 4 Density distribution contours of aluminum bumper
topology optimization by hybrid cellular automata method at
different iterations: (a) Iteration 1; (b) Iteration 5; (c) Iteration
15; (d) Iteration 54

2.1.2 BRI RS EAR ML

R B iy AR A 25 AR i AT R A s 05t
AR TEIIE O, R SE AR T s 5 (4 o A AT . HE
TER SR Vvt 0], DLRSMEFE A Gk, 2ol 20K
FAE V-3l S 2 F e BE L AT i 55 4% P 0 e
BB o WIPERS AT L 13.3 m/s RO 55 1 1125 1]
RAREE, W5 Pis.

Wl 6 JIT 7 A B 4o F Al R S A8 T o s A9 43 A1 11



522 B 1 F i, e A SV AR IR R AR S R R R T 93

%% L_?

B 5 B el R s i A AR R
Fig. 5  Schematic diagram of cross-section model of

aluminum bumper topology optimization
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Fig. 6 Density distribution contours of bumper cross-section

topology optimization by hybrid cellular automata method:
(a) Tteration 1; (b) Iteration 3; (c) Iteration 8; (d) Iteration 20;
(e) Iteration 60
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Fig. 8 Finite element model of aluminum bumper



94 A G EE R

20124FE 1 H

Update design
variables

Finite element
analysis

Energy absorption
Mass of bumper

Is
convergence
criterion
met?

Simulated
annealing method

Yes
Optimal design
B9 a e seR I w
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Table 2 Optimization parameters of simulated annealing
method
Item Variable Value
Front thickness 3.0 mm
Back thickness 3.0 mm
Input value . .
Middle thickness 3.0 mm
Up-down thickness 3.0 mm
Constraint Mass <4.0kg
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Fig. 10 Parallel coordinate plot of simulated annealing optimization results
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Fig. 11 Cross-section dimensions of aluminum bumper (mm)
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Fig. 12 Models of automotive front bumper: (a) Steel bumper;
(b) 6061 aluminum bumper
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Fig. 13 X displacement contours along direction X of front
bumper during static bending: (a) Steel bumper; (b) 6061

aluminum bumper
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Fig. 15 Comparison of simulated deformation ((a), (b")) with tested result ((a), (b)) of front bumper crash test at 20 km/h: (a), (a’)

Steel bumper; (b), (b") 6061 aluminum bumper
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