
第 22卷第 1期 中国有色金属学报  2012年 1月 
Vol.22 No.1  The Chinese Journal of Nonferrous Metals  Jan. 2012 

文章编号：1004­0609(2012)1­0039­06 

Mg­6%Zn­10%(β­Ca3(PO4)2)复合材料的制备及 

腐蚀降解行为 

陈福文 1, 2 ，余 琨 1, 2 ，陈良建 2, 3 ，裴赛敏 3 ，汪瑞芳 3 ，李少君 1 ，胡亚男 1 

(1. 中南大学 材料科学与工程学院，长沙  410083； 

2. 中南大学 粉末冶金国家重点实验室，长沙  410083； 

2. 中南大学 湘雅三医院，长沙  410013) 

摘 要：以Mg­6%Zn 合金为基体、β­Ca3(PO4)2 为强化相，采用粉末冶金工艺制备Mg­6%Zn­10%(β­Ca3(PO4)2 )复 

合材料。利用光学显微镜观察复合材料的显微组织，采用 X射线衍射仪分析相组成，采用压缩试验评估复合材料 

力学性能，采用动电位极化法和浸泡实验研究复合材料在模拟体液(SBF)中的腐蚀行为。结果表明：β­Ca3(PO4)2 
在烧结过程中与基体合金没有发生明显反应；复合材料密度为 1.936 g/cm 3 ，压缩强度为 339 MPa，弹性模量为 24 

GPa；添加 β­Ca3(PO4)2 可降低Mg­6%Zn在 SBF中的腐蚀速度；Mg­6%Zn­10%(β­Ca3(PO4)2)复合材料在 SBF中的 

电化学腐蚀速度为 2.277 mm/y，浸泡 30  d的浸泡腐蚀速度为 2.133 mm/y，SBF的  pH值随着浸泡时间的延长而 

上升，最终稳定在 10。 
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Abstract:  Using  Mg­6%Zn  as  the  matrix  and  β­Ca3(PO4)2 as  reinforcement,  the  Mg­6%Zn­10%(β­Ca3(PO4)2)  bio­ 
composite  was  fabricated  by  the  powder  metallurgy  method.  The  microstructure  of  Mg­6%Zn­10%(β­  Ca3(PO4)2) 

biocomposite  was  observed  by  optical  microscopy  and  the  phases  were  analyzed  by  X­ray  diffractometry.  The 
mechanical properties were  evaluated  by  compression  tests. The corrosion  behavior  of  the bio­composite  in  simulated 

body  fluid  (SBF) was studied by potentiodynamic polarization and immersion tests. The  results  show that  the reaction 
between β­Ca3(PO4)2 particles and Mg­6%Zn matrix during sintering is not observed. The density of the biocomposite is 

1.936  g/cm 3 ,  the  compression  strength  is  339 MPa  and  the  elastic  modulus  is  24  GPa.  The  additive  of  β­Ca3(PO4)2 
reduces  the corrosion  rate  of Mg­6%Zn.  The  electrochemical  corrosion  rate  of Mg­6%Zn­10%(β­Ca3(PO4)2)  is  2.277 

mm/y,  and  the  calculated  corrosion  rate  of  the  biocomposite  immersed  in  SBF  for  30  d  is  2.133 mm/y.  During  the 
immersion test, the pH value of SBF increases gradually, and at last stabilizes at 10. 
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金属植入材料是临床中广泛应用的一类外科植入 

材料。镁具有良好的生物相容性 [1] ，可以作为医用植 

入材料来使用。相比于传统的植入金属材料，镁具有 

不可替代的优点：1)镁可以在体内获得降解 [2] ，使患 

者解除了第二次手术的痛苦；2)生成的Mg 2+ 能被人体 

吸收，可促进钙的沉积，促进骨细胞的形成，加速骨 

的愈合 [3] 等；3)镁合金的弹性模量与骨接近，植入人 

体后不会产生应力屏蔽效应。然而，由于镁合金在 pH 
值为 7.4～7.6， 含有 Cl − 的生理环境中腐蚀速度过快 [4] ， 

在新骨生长完好之前会失去机械完整性 [4] 。因此，改 

善和调控其腐蚀速度， 是镁及镁合金作为骨修复材料， 

特别是承重骨替代材料能否应用于临床的关键。 

许多研究者通过合金化来降低镁合金腐蚀速度， 

研究得最多的合金元素为 Al 和稀土元素。尽管 Al和 

稀土元素能够提高镁合金的耐蚀性， 但是 Al对造骨细 

胞和神经元有害 [5] ，而部分稀土元素(Pr，Ce，Y  等) 
会导致肝中毒 [6] 。如合金WE43植入体内后，Nd和 Y 
留在了骨内植入的位置 [7] ，这意味着稀土元素在人体 

内不易吸收或排泄。基于这些合金元素对人体不利的 

影响，近年来研究者开始转向新合金的开发，研究集 

中在  Zn、Ca 等几种对人体无毒的合金元素。实验证 

明，Zn  和  Ca 能够降低合金在模拟体液中的腐蚀速 

度 [8−10] 。WITTE等 [11] 指出，为满足人体的降解速度以 

及体内机械完整性的需要，镁基复合材料是潜在的可 

用医用植入材料。强化相羟基磷灰石(HA)的加入能够 

降低镁合金的生物降解速度 [11] ，目前镁基复合生物材 

料的研究多以 HA为强化相， 但 HA在体内难以降解， 

对镁合金作为可降解植入材料不利。 Zn 是人体所需的 

元素， ZHANG等 [10] 中指出Mg­6%Zn合金具有很好的 

生物相容性，Zn能提高镁合金的耐蚀性。β­Ca3(PO4)2 
(简写为  β­TCP)具有良好的生物相容性，在人体内能 

够降解，并且对骨的再生有利 [12] 。因此，本实验选用 
Mg­6%Zn  为基体合金， β­TCP  为强化相来制备 
Mg­6%Zn­10%(β­TCP)复合材料，并且对所制复合材 

料的生物腐蚀降解行为进行研究。 

1  实验 

采用粉末冶金方法制备 Mg­6%Zn­10%(β­TCP)复 

合材料：将Mg粉(质量分数为 99.9%)、Zn 粉(质量分 

数为  99.9%)以及  β­TCP 粉末(粉末颗粒平均直径约  8 
μm)用混料机混合均匀后，在 680~700 ℃烧结，烧结 

时间为 30 min。 

采用  POLYVAR­MET 宽视野金相显微镜对试样 

中  β­TCP  相的形貌及分布状态进行观察，采用 

DMAX−2500X  型  X  射线衍射仪确定其物相，采用 
GLEEBLE 1500型材料热模拟试验机进行压缩试验以 

确定复合材料的压缩强度和弹性模量。 

采用浸泡实验和电化学实验来研究  Mg­6%Zn­ 
10%(β­TCP)复合材料的腐蚀行为。测试所用溶液为模 

拟体液(简称 SBF， 其组分浓度分别为 NaCl 8.035 g/L， 
NaHCO3 0.335 g/L， KCl 0.225 g/L， K2HPO4∙3H2O 0.231 
g/L，MgCl2∙6H2O 0.311 g/L，CaCl2 0.292 g/L，Na2SO4 

0.072  g/L，Tris(HOCH2)3CNH2  6.228  g/L) [13] ，实验前 

用 HCl和 NaOH调节 SBF 的 pH为 7.4。 

采用  CHI660C 型电化学工作站测试动电位极化 

曲线，扫描速度为 10 mV/s。 

浸泡实验过程中对浸泡不同时间后的试样进行拍 

照观察，干燥后称量质量。通过测量浸泡不同时间后 

的质量损失来计算腐蚀速度。用 pHS−3C 酸度计测量 

溶液在浸泡过程中的 pH 值。采用 JSM−5600Lv 型扫 

面电镜观察锻造试样腐蚀表面形貌，采用  EDS  测试 

腐蚀表面的元素组成。 

试样的体密度采用阿基米德排水法在精度为 
0.001 g的电子天平上精确测量。测量前将试样表面用 

丙酮擦洗干净，测量值取 3 个试样的平均值。密度的 

计算公式为 

1 
0 

1 2 

m 
m m 

ρ ρ = × 
− 

(1) 

式中：m1 为试样在空气中的质量，m2 为试样在蒸馏水 

中的质量； ρ0 为室温(25℃)时试样的密度， 0.998 g/cm 3 。 

电化学实验腐蚀速度(ve, mm/y)的计算公式为 [14] 

e 
3.28M v J 
nρ 

=  (2) 

式中：M 为参加反应的物质的相对原子质量；n 为电 

化学腐蚀反应中转移的电子数；ρ 为密度；  J 为腐蚀 

电流密度。 

浸泡实验腐蚀速度(vi, mm/y)的计算公式为 [15] 

i 
87 600 

=  W v 
Atρ 

(3) 

式中：W 为质量的损失，g；A 为浸泡面积，cm 2 ；t 
为浸泡时间，h；ρ为密度，g/cm 3 。 

2  结果和讨论 

2.1  Mg­6%Zn­10%(β­TCP)复合材料组织、结构和 

力学性能 

图 1 所示为 Mg­6%Zn­10%(β­TCP)复合材料的显
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微组织。由图 1 可以看出，试样主要由镁合金基体以 

及弥散分布在基体中的  β­TCP  组成，试样局部存在 
β­TCP团聚现象，但没有明显的孔隙。Mg­6%Zn­10% 
(β­TCP)复合材料表面  XRD  谱显示，Mg­6%Zn­10% 
(β­TCP)复合材料主要由 β­TCP，Mg 和 MgZn 三相组 

成，添加  β­TCP后复合材料并没有生成新的相，如图 
2所示。 

Mg­6%Zn 的密度为 1.801 g/cm 3 ， 复合材料密度为 
1.936  g/cm 3 ，这表明试样密度接近自然骨的密度 [4] 。 

复合材料的压缩强度为 339 MPa， 弹性模量为 24 GPa， 

图 1  Mg­6%Zn­10%(β­TCP)复合材料的显微组织 
Fig. 1  Microstructure of Mg­6%Zn­10%(β­TCP) composite 

图 2  Mg­6%Zn­10%(β­TCP)复合材料的 XRD谱 
Fig. 2  XRD patterns of Mg­6%Zn­10%(β­TCP) composite 

而文献[14]中指出，自然骨的弹性模量为 3～20 GPa， 

这表明试样的弹性模量接近自然骨的弹性模量。 

2.2  β­TCP对Mg­6%Zn腐蚀速度的影响 
Mg­6%Zn  和复合材料  Mg­6%Zn­10%(β­TCP)在 

SBF中的腐蚀是电化学腐蚀的过程。图 3所示为试样 

在 SBF中的极化曲线。 由图 3可见， Mg­6%Zn 在 SBF 
中的自腐蚀电位为−1.618  V，腐蚀电流密度为  0.143 
mA/cm 2 ，其电化学腐蚀速度为 3.126 mm/y，而添加了 
β­TCP  的复合材料在  SBF  中的自腐蚀电位正移至 
−1.592 V，腐蚀电流密度降为 0.112 m A/cm 2 ，其电化 

学腐蚀速度也减小到 2.277 mm/y。 

图 3  试样在 SBF中的极化曲线 
Fig. 3  Tafel curves of samples in SBF 

浸泡不同时间后的试样按质量损失率来计算腐蚀 

速度，结果如图 4所示。由图 4可以看出，Mg­6%Zn 
和 Mg­6%Zn­10%(β­TCP)的腐蚀速度均随时间的增加 

呈持续下降的趋势，Mg­6%Zn 的腐蚀速度从浸泡 2 d 
后的  8.571  mm/y 降到  30  d  后的  3.074  mm/y，而 
Mg­6%Zn­10%(β­TCP)的腐蚀速度从浸泡  2  d  后的 
7.342 mm/y降到 30 d后的 2.133 mm/y。 这主要是因为 

该复合材料在浸泡的过程中产生的腐蚀产物能够阻碍 

腐蚀的进一步进行。Mg­6%Zn­10%(β­TCP)不同时期 

的腐蚀速度均高于 Mg­6%Zn 的，这说明 β­TCP 的添 

加能够对基体合金在SBF溶液中的腐蚀起到一定的阻 

碍作用。对比电化学腐蚀速度和浸泡腐蚀速度可以看 

出，在浸泡早期的腐蚀速度要高于电化学腐蚀速度， 

这主要是因为镁合金在腐蚀介质中阳极溶解时，可能 

会直接产生低价态离子(Mg + )， 而低价态离子再通过化 

学反应的途径氧化成高价态的离子(Mg 2+ )成为最终产 

物。 法拉第定律是按最终产物的价态Mg 2+ 来计算阳极 

溶解速率，这样换算得到的质量损失就会小于实际质 

量损失。在浸泡的过程中，试样中的 β­TCP强化相会



中国有色金属学报  2012 年 1 月 42

图 4  试样浸泡不同时间的腐蚀速度 

Fig.  4  Corrosion  rates  of  immersed  samples  with  different 

times 

随着基体金属一起溶解，而 β­TCP的溶解不会产生电 

流，试样在溶解的时候，除了阳极溶解外，还同时有 

未溶解的微小粒子的脱落，在这种情况下实际溶解质 

量要大于用法拉第定律换算出的质量损失，因而浸泡 

腐蚀速度大于电化学腐蚀速度。 

2.3  Mg­6%Zn/10%(β­TCP)的腐蚀行为 

图  5  所示为  Mg­6%Zn­10%(β­TCP)复合材料在 
SBF 中浸泡不同时间后溶液 pH 值的变化。从图 5 可 

以看出，在整个浸泡过程中，SBF 的 pH 值是呈上升 

的趋势，并且最终稳定在 10。SONG 等 [16] 指 出，镁 

在水溶液中的溶解遵循如下反应。 

阳极反应： 

Mg→Mg 2+ +2e  (4) 

图 5  浸泡复合材料的 SBF的 pH值变化 

Fig.  5  Variation  of  pH  value  of  SBF  immersed  with 

composite 

阴极反应： 

2H2O+2e→H2+2OH －  (5) 
Mg+2H2O→Mg(OH)2+H2  (6) 

因此，试样在浸泡过程中释放的气体为氢气。溶 

液中的Cl − 将Mg(OH)2 转为MgCl2 [17] ， 导致溶液中OH − 

增加，从而使得 pH值增大。 

图 6所示为试样在 SBF溶液中浸泡不同时间的质 

量变化，图 7所示为对应于图 6 中所示的浸泡时间的 

宏观腐蚀形貌。浸泡前，观察到试样表面光亮且有金 

属光泽。浸泡后，试样开始腐蚀，质量减少，浸泡 6d 
后，相比于未腐蚀前，试样质量降为最低，试样表面 

可以观察到很明显的腐蚀坑。随着浸泡时间的增加， 

质量开始增加，浸泡 16 d后质量达到了最大。试样表 

面可以观察到很明显的白色颗粒状物质的沉积，腐蚀 

产物的沉积对腐蚀的进一步进行起到了一定的阻碍作 

用。试样浸泡 20 d后，试样表面沉积的白色颗粒状物 

质脱落，质量减轻，浸泡 26 d后，质量增加，试样表 

面覆盖一层白色的腐蚀产物。浸泡 30 d后，质量出现 

降低的情况，试样表面覆盖一层白色的腐蚀产物并且 

比浸泡 26 d时的腐蚀产物更厚更致密，局部可以看到 

腐蚀穿透白色的腐蚀产物进一步向内深入所形成的黑 

色坑。从图 6和 7可以看出，在浸泡过程中腐蚀产物 

是一个沉积和脱落相交替的过程。腐蚀产物对腐蚀能 

起到阻碍作用，腐蚀产物不够致密，Cl − 可以穿透腐蚀 

产物层进一步腐蚀试样。 

图 6  浸泡在 SBF 中的 Mg­6%Zn­10%(β­TCP)试样的质量 

变化 

Fig.  6  Mass  changes  of  Mg­6%Zn­10%(β­TCP)  samples 

immersed in SBF 

为进一步研究试样在 SBF中的微观腐蚀形貌，利 

用 SEM 对腐蚀试样进行了观察。图 8 所示为试样的 

微观腐蚀形貌，图  8(a)所示为浸泡  6  d  后试样的腐
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图 7  Mg­6%Zn­10%(β­TCP)试样在 SBF中浸泡不同时间的宏观腐蚀形貌 

Fig. 7  Surface morphologies of Mg­6%Zn­10%(β­TCP) samples immersed in SBF for different times: (a) Before corrosion; (b) 6 d; 

(c) 16 d; (d) 20 d; (e) 26 d;(f) 30 d 

图 8  Mg­6%Zn­10%(β­TCP)试样在 SBF中浸泡后的 SEM像和 EDS谱 

Fig. 8  SEM  images  and EDS spectra of Mg­6%Zn­10%(β­TCP) samples  immersed  in SBF: (a) Section  image, 6 d; (b) Surface 

morphology, 2 d; (c) EDS spectra of rectangle area shown in Fig. 8(b) 

蚀截面图。从图  8(a)可以看出，试样的腐蚀过程为不 

均匀的腐蚀过程，腐蚀可以穿过表面覆盖物向内部深 

入，从而使得被腐蚀的部分物质被腐蚀产物包裹而分 

离开来。图 8(b)所示为浸泡 2  d 后试样的表面形貌。 

从图 8(b)可以看出，试样浸泡 2  d 后，表面覆盖腐蚀 

产物。由图 8(c)可知，这些腐蚀产物为富含 O、Mg、 
P、Ca的物质。ZHANG等 [10] 指出，浸泡在 SBF中的 
Mg­6%Zn 表面检测到了 HA的存在，而WITTE等 [11] 

将以 AZ91D为基体、HA为强化相的金属基复合材料 

在人工海水中浸泡 24 h 和 72 h 后， 在其表面均检测到 

了CaCO3 的存在。 KUWAHARA等 [2] 指出， 镁在Hank’s 
溶液中表面沉积的腐蚀产物很可能是无定形的 
(Ca0.86Mg0.14)10(PO4)6(OH)2，还可能有含有磷酸盐的非 

晶镁/钙的存在。在浸泡的过程中，随着基体金属的溶 

解，强化相 β­TCP 也会溶解，Mg 2+ 、Ca 2+ 、(PO4) 3− 溶 

于溶液中，与溶液中的离子作用生成复杂的磷酸盐或 

者是碳酸盐紧紧地附着在试样的表面上，对腐蚀起到 

阻碍作用。
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3  结论 

1) β­TCP与基体合金在烧结的过程中没有发生明 

显反应。 复合材料密度为 1.936 g/cm 3 ， 压缩强度为 339 
MPa，弹性模量为 24 GPa。 

2)  β­TCP 的添加能够提高 Mg­6%Zn 的耐蚀性。 
Mg­6%Zn­10%(β­TCP)复合材料在 SBF 中的自腐蚀电 

位为−1.592 V，腐蚀电流密度为 0.112 mA/cm 2 ，腐蚀 

速度为 2.277 mm/y。复合材料浸泡 2 d后的腐蚀速度 

为7.342 mm/y， 浸泡30 d后的腐蚀速度为2.133 mm/y。 
3)  浸泡了  Mg­6%Zn­10%(β­TCP)复合材料的 

SBF 的  pH值随着浸泡时间的增加而上升，最终稳定 

在 10。复合材料表面覆盖的腐蚀产物为富含 O、Mg、 
P、Ca的物质，对腐蚀起到了阻碍作用。 
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