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Interface debonding properties of
carbon nanotube-reinforced magnesium matrix composites
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Abstract: A theoretical model on the frictional pull-out properties of CNTs/Mg composite was presented to describe the
interfacial elastic stress transfer, then the stress and strain of respective components of CNTs/Mg composite were derived.
Considering the Poisson’s effect and friction stress at the debonded interface and based on the energy equilibrium and the
interphase strain criterion in the interfacial debonding process, an expression for the energy release rate and the crack
opening displacement profile was derived. The effects of the parameters on the fracture characteristics of CNTs/Mg
composite were investigated by the relative energy release rate and crack opening displacement profile. The results show
that the greater the interface debond length and interface thickness are, the better the relative energy release rate can be
obtained. Larger interface debond length, interface thickness, interface elastic modulus and interface Poisson’s ratio have
more influence on the crack opening displacement profile. The smaller the CNTs aspect ratio is, the better the relative
energy release rate and the crack opening displacement profile can be obtained. The interface elastic modulus and
interface Poisson’s ratio have optimum effects for the magnesium matrix composites.
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