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高强高韧铝锌镁钪合金板材制备及其组织性能演变 
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摘 要：采用力学性能测试和电子显微分析技术研究了不同加工处理条件下  Al­5.4Zn­2.0­Mg­0.25Cu­0.1Sc­0.1Zr 
合金的显微组织及性能演变。结果表明：在半连续激冷铸造条件下，铸锭存在晶界偏析，形成了富 Zn、Mg的非 

平衡相和富 Fe、Si、Mn的杂质相；经 470 ℃、12 h均匀化处理后，富 Zn、Mg的非平衡相溶入基体，仅剩下少 

量富 Fe、Si、Mn的杂质相；与此同时，铸锭合金固溶体分解析出纳米级的 Al3(Sc, Zr)相，470℃、12 h是研究合 

金合适的铸锭均匀化制度；铸锭热变形过程中，随试验温度升高合金强度逐渐降低，伸长率则先增加而后降低， 
350~400 ℃的温度范围内合金具有较稳定的热变形抗力和塑性，是合宜的热变形温度范围；合金冷轧板材经 

470℃、1 h固溶处理后，热变形过程中形成的大量非平衡相溶入基体形成过饱和固溶体，时效过程中脱溶顺序为 
αsss(α过饱和固溶体)→GP区→η′相→η相。合金板材最佳固溶−时效工艺为（470℃, 1 h）固溶+(120℃, 24 h)时效， 

在此条件下，试验合金的抗拉强度、屈服强度和伸长率分别可达 533 MPa、494 MPa和 15%。试验合金的高强度 

主要来源于 η′相析出强化、添加微量 Sc和 Zr引起的亚晶强化和亚结构强化以及 Al3(Sc, Zr)相的弥散强化。 
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Abstract:  The  evolution  of  microstructure  and  properties  of  Al­5.4Zn­2.0Mg­0.25Cu­0.1Sc­0.1Zr  under  different 

processing and heat treatment conditions was studied using mechanical properties measurement and electron microscopy. 
The results show that, under semi­continuous casting conditions, at grain boundaries there is some segregation which is 

bearing Zn, Mg non­equilibrium phases and indissoluble impurity phases containing Fe, Si and Mn elements. After the 
homogenization at 470 ℃ for 12 h the non­equilibrium phases dissolve into matrix completely and only small amounts of 

indissoluble phases still exist. At the same time, the solid solution matrix precipitates nano­scaled Al3(Sc, Zr) dispersoid 
particles. The proper homogenization treatment processing of the ingot is at 470 ℃ for 12 h. During the hot deformation 

of  ingot, with the increase of deformation temperatures, the strength decreases, the elongation increases firstly and then 
decreases. Between 350 ℃ and 400 ℃  the alloy is of a more stable deformation characteristics and this is the suitable 

deformation temperature range for this alloy. After solutioning at 470 ℃  for 1 h lots of non­equilibrium phases formed 
during  hot  rolling  dissolve  into  the  matrix.  The  precipitation  sequence  of  the  alloy  during  aging  is  described 
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as  follows:  supersaturated  solid  solution  (α)→GP  zones→metastable  η′  phase→η  phase.  The  suitable  solution­aging 
treatment processing of the studied alloy is solution­treated at 470℃ for 1 h, followed by water quenching and then aged 
at 120 ℃ for 24 h. Under this condition,  the ultimate tensile strength, yield strength and elongation of the studied alloy 
plate  could  reach  533  MPa,  494  MPa  and  15%,  respectively.  The  strengthening  mechanism  of  the  studied  alloy  is 
precipitation strengthening of  fine η′ phase,  subgrain strengthening and dispersion strengthening caused by Al3(Sc, Zr) 
dispersoid particles. 
Key  words:  Al­Zn­Mg­Sc­Zr  alloy;  plate;  ingot  homogenization;  thermal  plasticity;  solution­aging;  microstructure; 
mechanical properties; evolution 

Al­Zn­Mg合金具有强度高、塑性好、可焊性好和 

耐腐蚀性能优良等特点，被广泛用于要求轻质高强的 

焊接结构件，是航天航空、交通运输工具中重要的轻 

质结构材料 [1−3] 。然而，航天航空技术的发展对材料的 

要求越来越高，需要强度更高及焊接性能优良的铝合 

金材料。大量研究表明 [4−11] ，在铝合金中复合添加微 

量 Sc、Zr 可达到这个目的。YIN等 [4] 对比研究了复合 

添加 0.35(Sc+Zr)对 Al­Zn­Mg 合金组织性能的影响， 

指出添加 Sc、 Zr 后的合金时效后抗拉强度和屈服强度 

分别提高了 93 MPa和 104 MPa， 其强度的增加主要源 

自于 Al3(Sc,  Zr)粒子引起的细晶强化、亚结构强化和 

沉淀强化；聂波等 [9] 通过 Sc、Zr微合金化研制了中强 

耐蚀可焊铝镁钪合金板材，其拉伸性能 σb≥415 MPa、 
σ0.2≥302  MPa、δ5≥15%，剥落腐蚀性能达到 P 级， 

焊接接头强度系数不小于 0.85；DEV等 [10] 研究指出， 

在中强 Al­Zn­Mg合金焊接料中添加 0.65% Sc(质量分 

数)，可显著细化焊接接头凝固组织，从而提高焊接接 

头强度，降低凝固开裂倾向； OCENASEK  和 
SLAMOVA等 [11] 研究表明，传统 AA5754铝合金的完 

全再结晶温度为 360 ℃，在此合金中复合添加 0.25% 
Sc(质量分数)和 0.08%  Zr(质量分数)后直到 600 ℃时 

才观察到部分再结晶。俄罗斯全俄轻合金研究院与全 

俄复合材料研究院合作，在中强可焊  Al­Zn­Mg 合金 

基础上， 复合添加微量 Sc和 Zr， 开发了牌号为 01970、 
01975和 01981的铝锌镁钪合金 [5] ，其中，01975是低 
Sc含量的合金。这种合金具有较高的强度、较优的耐 

腐蚀性能、较低的各向异性，成本也较低，是新一代 

航天轻质高强结构材料。然而，国内外文献对这种低 
Sc含量的铝锌镁钪合金的研究还鲜见报道。因此，尽 

快研制出性能指标达到国内航天用户要求的这种合金 

具有重要意义，本文作者研究了铝锌镁钪合金板材制 

备过程中铸锭均匀化处理、铸锭均匀化后的热变形以 

及板材固溶时效处理工艺的优化，在此基础上还研究 

了合金制备过程中的显微组织结构演变，旨在为这种 

新型高强高韧铝锌镁钪合金的研究与开发提供理论和 

实验指导。 

1  实验 

1.1  材料制备 

试验合金名义成分为  Al­5.4Zn­2.0Mg­0.25Cu­ 
0.1Sc­0.1Zr (质量分数，%)。板材制备工艺为半连续铸 

造成锭→铸锭均匀化处理→铸锭热轧→冷轧成薄板→ 

固溶→时效。 

1.2  实验方法 

铸锭均匀化处理温度上限通过铸锭  DSC 结果选 

定，DSC实验在 NETZSCH  STA  449C差热分析仪上 

进行，加热速度为 10℃/min。均匀化处理样品从铸锭 

上用线切割截取，尺寸为 25 mm×25 mm×6 mm，均 

匀化处理温度为  200、250、300、350、400、450 和 
470 ℃，保温时间为 1~24 h。均匀化处理在盐浴中进 

行，盐浴控温精度为±1℃。为了保持均匀化处理状态 

的组织和性能，均匀化处理后水冷。在 D60K 数字金 

属电导率测量仪上进行电导率测试；为了进一步评估 

均匀化处理对合金性能的影响，铸锭均匀化处理后热 

轧，然后在室温下对热轧板材进行拉伸性能测试和 

比较。

铸锭经过最佳均匀化处理后进行加工热塑性研 

究，高温瞬时拉伸试验样品尺寸见图 1。 

高温瞬时试验温度为 100、200、300、375、400、 
425、450和 500 ℃，拉伸速度为 2  mm/min，每个温 

度点高温力学性能数值取 3 个样品的平均值，试验按 

照  GB/T  4338—1995(合金高温拉伸试验方法)的有关 

规定进行， 通过高温性能选定铸锭最佳变形温度范围。 

高温瞬时拉伸试验在  RWS50 电子蠕变松弛试验机上 

进行，为了观察高温瞬时拉伸断口形貌，高温试验后 

将断口立即置于无水酒精中以避免断口氧化，然后在 
Quanta MK2−200环境扫描电镜下进行断口分析。 

铸锭经过最佳均匀化处理后，在最佳变形温度范 

围进行热轧，热轧变形程度为 90%，热轧后板材厚度
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图 1  高温瞬时拉伸试样尺寸 

Fig.1  Specification of tensile sample at elevated temperatures (Unit: mm) 

为 7 mm, 热轧板材经过 5道次轧成 2 mm的薄板。薄 

板固溶处理温度为 450、460、470、480及 490℃，固 

溶时间为 0.5~1.5 h，固溶处理也在盐浴炉中进行，固 

溶处理后水淬，淬火转移时间不长于 2 s。时效处理温 

度为 100、110、120及 130℃，时效时间为 10 min~36 
h。 时效处理在鼓风干燥箱中进行，时效后样品空冷后 

进行性能测试。最终力学性能、电导率和硬度值均取 

同一状态下 3 个样品的算术平均值，误差棒误差采用 

样本总体的标准偏差。室温拉伸试样按照 GB 6397— 
86(金属拉伸试验试样)的规定加工成标准矩形试样， 

拉伸试验在 CSS−44100电子万能材料实验机上进行， 

拉伸速度为 2 mm/min。 

为了检测不同固溶处理条件下平衡相的溶解程 

度，在 Quanta MK22200 环境扫描电镜下采用背散射 

扫描电子成像技术对残留相进行观察。薄膜样品经机 

械预减薄后再双喷电解减薄，电解液为硝酸与甲醇的 

混合液(体积比为 1:3)，电解减薄温度低于−20 ℃。透 

射电子显微组织观察在  TECNAI  G 2 20  电镜上进 

行，高分辨在  JEM−3010 电镜上完成, 加速电压均为 
200 kV。 

2  实验结果 

2.1  均匀化处理对铸态合金组织和性能的影响 
2.1.1  铸态合金的显微组织和铸锭加热过烧温度的 

测定 

铸态合金扫描电子显微组织如图 2 所示。由图 2 
可知，铸态合金晶粒尺寸约为 50  μm，晶界有明显的 

偏析，能谱分析结果见表  1。其中，白色网络状相  A 
为富  Zn、Mg 的非平衡相，灰色相  B 为含  Fe、Si、 
Mn  杂质相。可见，为了使合金成分均匀，铸态合金 

需进行均匀化处理。 

试验合金铸锭的DSC结果如图3所示。 结果表明， 

图 2  铸态合金的 SEM像 

Fig.2  SEM  images  of  as­cast  alloy:  (a)  Low magnification; 

(b) High magnification 

表 1  图 2(b)中第二相化学成分 

Table  1  Chemical  composition  of  the  secondary  phases 

shown in Fig.2(b) 

Mole fraction/% 
Phase 

Al  Zn  Mg  Cu  Fe  Si  Mn 

A  59.46  17.27  20.62  2.65  0  0  0 

B  79.83  1.50  1.29  0.66  11.18  3.81  1.73 

在 477.7 ℃可观察到一明显的吸热峰，说明合金铸锭 

中存在对应于 475 ℃开始熔化的非平衡相，该温度应 

为铸锭的常规过烧温度，因此，均匀化处理的最高温
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度不能超过 470℃。 
2.1.2  均匀化处理对铸态合金硬度与电导率的影响 

在不同均匀化处理条件下，Al­Zn­Mg­Sc­Zr 合金 

的布氏硬度和相对电导率的变化如图 4所示。 

图 4(a)和(b)中时间为 0 时的点分别表示未经均匀 

化处理的铸态合金的硬度和电导率。结果表明：当均 

匀化温度低于 300℃时， 合金硬度低于铸态合金硬度， 

图 3  铸态合金 DSC曲线 
Fig.3  DSC curve of as­cast alloy 

图 4  均匀化处理对铸态合金硬度与相对电导率的影响 
Fig.4  Effect  of  homogenization  treatment  on  hardness  and 
relative conductivity of cast alloy: (a) HB; (b) Conductivity 

且均匀化温度越低，硬度越低；当均匀化温度达到 
350 ℃以上时，合金硬度高于铸态合金硬度，且随均 

匀化温度的升高，合金硬度先升后降，400 ℃均匀化 

时合金硬度最高。电导率的变化规律则不同，均匀化 

处理态合金的电导率均高于铸态合金的，且随均匀化 

温度的升高，合金电导率单调下降。结果还表明，均 

匀化时间达到 12 h后，延长均匀化时间对电导率和硬 

度影响不大。 
2.1.3  均匀化处理对铸态合金显微组织的影响 

铸态合金经不同均匀化处理后的扫描电子金相组 

织及其能谱如图 5所示。 

合金经 470 ℃、12 h 均匀化处理后的透射电子显 

微组织见图 6。 

对比图 2(a)和图 5(a)可知，铸态合金经 350 ℃、 
12 h均匀化处理后，大量非平衡相从基体中析出；经 
450 ℃、12 h 均匀化处理后，大部分平衡相又溶解到 

基体中；经 470 ℃、12 h均匀化处理后，非平衡相基 

本上溶解到基体中，但是仍然残存少量富 Fe、Si、Mn 
杂质相；合金经 470℃、24 h 均匀化处理后，难溶杂 

质相并没有减少的迹象。由图  6  可知，铸态合金经 
470 ℃、12 h 均匀化后，除晶界和晶内非平衡相全部 

回溶入铝基体外， 晶内还析出了大量蹄印状 Al3(Sc, Zr) 
粒子。 
2.1.4  均匀化处理对热轧板材拉伸力学性能的影响 

合金铸锭经不同均匀化处理后热轧成板材，板材 

拉伸力学性能如图 7所示。 

由图 7 可以看出，随着均匀化温度的升高，热轧 

板强度略有升高而后又稍有下降，其中，经 450 ℃、 
12 h均匀化处理热轧板的强度较高；伸长率则单调上 

升，其中，经 470 ℃、12 h 均匀化处理热轧板的伸长 

率最高。综合强度和伸长率结果可见，470 ℃、12  h 
是合金较合适的铸锭均匀化工艺。 

2.2  均匀化处理后铸锭的热塑性 
2.2.1  高温瞬时拉伸力学性能 

经 470 ℃、12 h 均匀化处理后铸锭在不同试验温 

度下的高温拉伸力学性能如图 8所示。结果表明，随 

试验温度升高，强度单调下降，伸长率先升后降， 
350~400 ℃范围内，强度和塑性随试验温度的变化比 

较缓慢，即在该温度范围内，合金具有较稳定的热变 

形抗力和塑性。 
2.2.2  瞬时拉伸后试样的断口形貌 

不同试验温度下瞬时拉伸后合金的断口特征如图 
9 所示。可以看出，在不同试验温度下，合金的断口 

特征明显不同。较低温度下，断口主要呈现穿晶断裂



中国有色金属学报  2011年 10月 2620 

图 5  均匀化处理对铸态合金微观组织的影响 
Fig.5  Effect of homogenization treatment on microstructure of as­cast alloy: (a) 350℃, 12 h; (b) 450℃, 12 h; (c) 470℃, 12 h; (d) 
470℃, 24 h; (e) Magnified image of figure (c); (f) EDS result of point A in (e) 

图 6  合金经 470℃、12 h均匀化处理后的 TEM像 
Fig.6  TEM images of cast alloy homogenized at 470 ℃ for 12 h: (a) Non­equilibrium phases dissolved into Al matrix; (b) Al3(Sc, 
Zr) particles within grain
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图 7  均匀化处理对热轧板拉伸力学性能的影响 

Fig.7  Effect  of  homogenization  treatment  on  mechanical 

properties of hot rolling plates 

图  8  均匀化处理后的铸锭在不同试验温度下的高温瞬时 

拉伸性能 

Fig.8  High  temperature  instantaneous  tensile  properties  of 

as­homogenized ingot at different test temperatures 

图 9  不同试验温度下瞬时拉伸后试样的断口形貌 

Fig.9  Fractographs of  as­homogenized  ingot  after  instantaneous  tensile  test  at  different  test  temperatures:  (a) 28 ℃;  (b) 300 ℃; 

(c) 400℃; (d) 500℃ 

特征，升高温度，断口逐渐呈现沿晶断口特征(见图 
9(d))，表明高温下晶界发生了弱化。综合不同试验温 

度下的高温拉伸力学性能和断口特征可知，400 ℃左 

右为该合金适宜的变形温度。 

2.2.3  瞬时拉伸后试样的透射电子显微分析 

不同试验温度下瞬时拉伸后试样的透射电子显微 

分析如图 10所示。 

图 10结果表明， 常温下变形组织主要为位错亚结
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图 10  不同试验温度下瞬时拉伸后试样的 TEM像 

Fig.10  TEM images of instantaneous tensile sample at different test temperatures: (a), (b) 25℃; (c) 300℃; (d) 400℃; (e), (f) 500℃ 

构， 由于位错应变场的干扰， 原来与基体共格的Al3(Sc, 
Zr)粒子的蹄印状特征消失，粒子变为球形 (见图 
10(b))；在 300 ℃和 400℃试验温度下， 位错亚结构仍 

然存在；在 500 ℃试验温度下，晶界附近可以见到明 

显的强滑移线(如图 10(e)中箭头所指)，显示出高温下 

晶界滑动的特征，由于变形只集中在晶界附近，导致 

晶界弱化，表现出如图 9(d)所示的沿晶断口特征。与 

此同时，晶内大部分位错亚结构消失，位错应变场也 

随之消失，显示出与基体共格的 Al3(Sc,  Zr)粒子的蹄 

印状特征(见图 10(f))。
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2.3  固溶−时效处理对合金板材组织与性能的影响 
2.3.1 对板材拉伸性能的影响 

不同固溶处理后经 120 ℃、24 h时效处理的板材 

拉伸力学性能如图 11 所示。图 11(a)结果表明，随固 

溶温度的升高，合金板材强度和伸长率先升后降，经 
470 ℃固溶后时效板材的综合性能最佳，抗拉强度、 

屈服强度和伸长率分别为 533 MPa、 494 MPa和 15%。 

由图 11(b)可知，随固溶时间的延长，合金抗拉强度和 

伸长率先升后降，屈服强度先降后升，综合比较，合 

金板材最佳固溶处理工艺为 470℃、1 h。 

图 11  固溶处理对板材拉伸性能的影响 

Fig.11  Effect  of  solution  treatment  processing  on  tensile 

properties of as­aged alloy: (a) Effect of solution temperatures; 

(b) Effect of solution time 

经 470 ℃、 1 h 固溶处理后，合金板材在不同时效 

温度下时效 24  h 后的力学性能如图 12(a)所示。结果 

表明，随时效温度的升高，合金强度先升后降，伸长 

率则先降而后略有上升，当时效温度为 120 ℃时，合 

金的综合力学性能较优。在 120 ℃时效条件下，合金 

板材硬度、电导率及拉伸性能随时效时间的变化如图 

12(b)和(c)所示。可以看出，时效初期合金的硬度、电 

导率及强度急剧上升，而伸长率急剧下降；时效 12 h 
后，合金的硬度和强度缓慢上升，伸长率缓慢下降， 

时效 24 h 后硬度及强度达到峰值，继续时效合金硬度 

及强度随之下降， 合金电导率则单调上升。可以看出， 

合金板材较合适的时效时间为 24 h。 

图 12  时效处理对板材性能的影响 
Fig.12  Effect of aging processing parameters on properties of 
test  alloy  plate:  (a)  Effect  of  aging  temperatures  on  tensile 
properties;  (b)  Effect  of  aging  time  on  hardness  (HB)  and 
relative electric conductivity; (c) Effect of aging time on tensile 
properties
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2.3.2  对冷轧板材组织影响 

冷轧板材经 470℃、1 h 固溶前、后的 SEM像如 

图 13 所示。由图 13(a)可知，冷轧板材中存在两种类 

型的物相，能谱分析表明(表 3)，一种是富 Zn 和 Mg 
的铝化物，另外一种是沿轧向排列的富 Fe 和 Si 的杂 

质相。经 470℃、1 h 固溶后，非平衡富 Zn 和Mg的 

铝化物相已经溶入基体，只剩下少量难溶的  Fe 和  Si 
杂质相。 

图 13  冷轧板材经 470℃、1 h固溶前后的 SEM像 

Fig.13  SEM  images  of  cold­rolled  alloy  plate  before(a)  and 

after(b) solution treated at 470℃ for 1 h 

表 3  图 13中第二相化学成分 

Table  3  Chemical  compositions  of  the  secondary  phases 

shown in Fig.13 

Mole fraction% 
Phase 

Al  Zn  Mg  Cu  Fe  Si  Mn 

A  83.93  8.03  7.66  0.38  0  0  0 

B  85.43  1.94  3.22  1.30  7.04  3.81  1.06 

C  87.36  1.51  2.13  0.42  4.85  2.19  1.53 

固溶态合金板材的TEM像如图14所示。 由图14(a) 
可知，经 470℃、1 h 固溶后，合金为未再结晶的纤维 

状组织，纤维状晶粒由亚晶组成(箭头所示)。经放大 

观察可以看出(见图 14(b))，亚晶内及亚晶界存在大量 

细小弥散的纳米级 Al3(Sc,  Zr)粒子。固溶态合金沿铝 

基体的[011]入射方向的选区电子衍射花样(SAED)如 

图 14(c)所示。通过标定并根据参考文献[12−14]可知， 

铝基体中超点阵斑点来自 L12 结构 Al3(Sc, Zr)， 其斑点 

出现在 1/2(200)和 1/2(220)的位置。 

图 14  470℃/1 h固溶态合金板材的 TEM像 
Fig.14  TEM images of alloy plate solution treated at 470 ℃ 
for  1  h:  (a)  Fiber  structure  with  subgrains;  (b)  Al3(Sc,  Zr) 
within grains; (c) SAED, B=[011] 

经 470 ℃、1 h 固溶后，再进行 120℃时效，合金 

板材的 TEM像图 15所示。由图 15(a)和(b)可以看出，



第 21 卷第 10 期 尹志民，等：高强高韧铝锌镁钪合金板材制备及其组织性能演变  2625 

图 15  经(470 ℃,  1  h)固溶+120 ℃时效 

后合金板材的 TEM像 

Fig.15  TEM images of alloy plate treated 

by  470  ℃  for  1  h  solution  and  120 ℃ 

aging:  (a)  120 ℃,  1  h;  (b)  120 ℃,  1  h, 

HREM, B=[110]; (c) 120 ℃, 12 h; (d)−(f) 

120 ℃,  24  h;  (g)  SAED,  120 ℃,  24  h, 
B=  ] 12 1 [
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经 120 ℃、1 h 时效，晶内有细小的弥散质点析出，经 

高分辨分析可知，这种弥散质点为 GP 区；随时效时 

间的延长，GP区逐渐转变为短棒状析出相，晶界上可 

观察到断续分布的平衡相(见图 15(c))； 在 120 ℃、 24 h 
峰值时效条件下，合金晶粒组织仍为纤维状亚晶组织 
(如图 15(d)箭头所示)，晶内弥散分布着大量纳米级短 

棒状析出相，选区电子衍射花样表明，除在  1/2(220) 
位置上观察到较强的  Al3(Sc,  Zr)斑点外，在  1/3(220) 
和  2/3(220)位置上可观察到微弱的衍射斑点，根据参 

考文献 [15−20]可知，这种析出相为  η′相 (见图 
15(d)~(g))。 

3  分析与讨论 

3.1  均匀化处理过程中铸锭组织性能演变 

在半连续激冷铸造条件下，铝合金熔体冷却速度 

快，凝固过程为非平衡结晶过程，铸锭外部相当于熔 

体淬火，基体近似为饱和固溶体 [21−23] ；但是由于铸锭 

尺寸较大，铸锭中心温度较高，冷却速度较慢，凝固 

过程中，熔体中先结晶出来的高熔点化合物以及低熔 

点共晶化合物被推移到最后凝固的晶界区域，由此形 

成富 Zn、Mg 的低熔点非平衡相和富 Fe、Si、Mn 的 

难溶杂质相；在铸锭均匀化过程中, 铸锭组织会发生 

如下 3个方面的变化：1) 晶界区域富 Zn、Mg的低熔 

点非平衡相会逐步溶入基体中；2)  过饱和固溶体会 

分解析出非平衡相，由于析出温度高，析出相粗大； 
3)从过饱和固溶体中分解析出纳米级的二次  Al3(Sc, 
Zr)粒子。另一方面，随均匀化温度的升高，过饱和固 

溶体先分解析出的粗大非平衡相又重新溶入基体中, 
基体的固溶度出现先降后升的现象，固溶强化效果也 

先弱后强(析出相过于粗大没有析出强化作用)，因此， 

铸态合金硬度先降而后升(见图 4(a))。另一方面，基体 

固溶度的先降后升导致溶质原子对电子散射几率先降 

后升，这就使得铸态合金电导率呈现先升后降的现象 
(见图 4(b))。在 470 ℃、12  h 条件下均匀化处理后， 

非平衡相已基本回溶完全，只剩下少量的 Fe、Si、Mn 
难溶杂质相。 

随均匀化温度的升高， 铸锭中非平衡相逐渐溶解， 

固溶体溶质浓度逐渐增加，固溶强化效果逐渐增强， 

因此，均匀化温度越高，热轧后板材强度越高，当均 

匀化温度继续升高时，合金晶粒粗化，热轧板材强度 

降低。此外，均匀化温度的升高致使合金内成分均匀 

及铸造过程形成的内应力消除，从而使热轧板材伸长 

率单调上升，经 470℃、12 h 均匀化处理后热轧板材 

的伸长率达到最大值(见图 7)。 

文献和作者先前的研究指出 [24−26] ，含过渡族元素 
Sc、Zr 的铝合金均匀化处理的目的如下：1) 消除组织 

与成分的不均匀性； 2) 消除非平衡凝固过程中产生的 

残余应力； 3) 从过饱和固溶体中分解析出纳米级的二 

次 Al3(Sc,  Zr)粒子。本研究的实验结果再次说明了这 

一点。综上所述，470 ℃、12 h均匀化处理已达到均 

匀化目的，是合适的铸锭均匀化制度。 

3.2  铸锭热变形过程中的组织性能演变 

铸锭热轧工艺研究最重要的是铸锭加热温度的确 

定，过高的加热温度可能引起热脆、过烧或导致热轧 

粘辊，热轧塑性下降。温度过低，变形抗力增大，还 

可能引起不均匀变形，铸锭开裂， 热轧过程难以进行。 

通常热轧温度是根据已有相图、塑性图、变形抗力图 

和第二类结晶图来确定的。对于新型合金的热加工特 

性，可以通过高温瞬时拉伸试验(或热模拟试验)和生 

产现场验证试验来确定。 MENG等 [27] 及 HUANG等 [28] 

指出，铝合金热变形过程中的流变应力与变形体内的 

位错组态密切相关。在较低温度下变形，需要较高的 

能量来启动位错，随着变形程度的加大，易于形成位 

错缠结，而这种位错缠结有效阻碍金属变形，因此， 

合金变形抗力较大。升高变形温度，位错由于热激活 

程度的不同而发生动态回复或再结晶，合金变形抗力 

减小。变形温度越高，变形抗力越小。在 350~400℃ 

试验温度范围内， 强度随温度升高而降低的趋势趋缓， 

合金的塑性随试验温度的变化也相对缓慢，在此温度 

范围内，合金具有较稳定的热变形抗力和塑性。试验 

温度进一步增加， 晶界弱化，变形只集中在晶界附近， 

试样由穿晶断裂转变为沿晶断裂。生产现场试验也表 

明，铸锭在 380~400℃热轧，热轧效果较好。继续升 

高热加工温度，热轧板坯就会出现边裂。因此， 
350~400℃是试验合金锭坯合宜的热加工温度范围。 

3.3  固溶−时效过程中板材组织性能演变 

合金热轧后经过冷轧成薄板，冷轧态合金中晶内 

有密度很高的位错缠结，还有粗大的平衡相(见图 13) 
和球形 Al3(Sc,  Zr)粒子。高密度位错是冷轧变形的结 

果，平衡相是热轧后冷却过程中形成的，Al3(Sc,  Zr) 
粒子则是铸锭均匀化过程中析出的。冷轧板材固溶处 

理的主要目的是使冷轧板材中粗大的第二相尽可能地 

溶入基体，提高溶质原子在基体中的固溶度，进而增 

加时效过程中的相变驱动力，以便时效过程中析出尽
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可能多的第二相 [29−30] 。与此同时，还必须控制固溶过 

程中的晶粒长大。固溶处理过程中，位错受热激活发 

生滑移和攀移，形成了沿轧制方向排列的竹节状亚晶 

结构(见图 14(a))， 由于位错应力场的消失， 球形Al3(Sc, 
Zr)粒子的蹄印状共格特性又显示出来(见图 14(b))， 同 

时， 粗大的平衡相 η(MgZn2)溶入基体。 实验结果表明， 

当合金的固溶温度较低(450 ℃、1  h)或固溶时间过短 
(470℃、20 min)时，合金中残留的第二相较多，说明 

固溶不彻底，固溶强化效果没有充分发挥，故合金的 

强度较低。提高固溶温度，残留的第二相减少，固溶 

后基体的过饱和度增大，时效后第二相析出增多，合 

金的强度提高。继续升高固溶温度，合金体内的变形 

组织消失、晶粒粗化，合金强度随之下降(见图  11)。 

大量研究表明 [32−34] ，时效过程中 Al­Zn­Mg 合金过饱 

和固溶体脱溶顺序为：αsss(α过饱和固溶体)→GP区→ 
η′相→η相。对于本研究合金，是在 Al­Zn­Mg合金基 

础上添加少量 Cu和微量 Sc和 Zr 的合金。少量 Cu主 

要固溶在基体中， 微量 Sc和 Zr 与 Al主要形成 Al3(Sc, 
Zr)化合物，时效过程中的析出结果表明(见图 15)，微 

量 Sc 和 Zr 的存在并未明显改变 Al­Zn­Mg 合金的时 

效析出特征。 

3.4  时效态试验合金的强化机制 

以上显微组织结构观察和分析表明，时效态试验 

合金的晶粒组织为未再结晶的纤维状组织，纤维状晶 

粒由位错亚结构和细小的亚晶组成，相组织结构为铝 

基固溶体、η′相、η相和 Al3(Sc, Zr)化合物粒子。因此， 

时效态试验合金的强化机制应包括固溶强化、亚结构 

和亚晶强化、主要析出相 η′的强化和 Al3(Sc,  Zr)化合 

物粒子的弥散强化。 
3.4.1  固溶强化 

由  Al­Zn­Mg  三元相图富铝角 [35] 可以看出，在 
Al­5.4Zn­2.0Mg  成分范围内，合金处在  α(Al)+ 
η(MgZn2)相区内，说明  Zn  和  Mg  大部分形成了 
η(MgZn2)化合物，但是仍有小部分固溶在铝基体中。 

图 15的物相和结构分析表明， 时效态Al­5.4Zn­2.0Mg­ 
0.25Cu­0.1Sc­0.1Zr试验合金只有铝基固溶体 α(Al)、 η′ 
相、η相和 Al3(Sc,  Zr)化合物粒子，没有观察到含 Cu 
相的存在，说明微量  Sc和 Zr 主要以 Al3(Sc,  Zr)化合 

物粒子的形式存在，而  Cu 主要固溶在铝基体中，起 

固溶强化作用并能改善合金的耐蚀性 [5] 。 
3.4.2  微量  Sc和 Zr 引起的亚结构强化、亚晶强化和 

弥散强化 

文献[2, 4, 6 ]的结果表明：当 0.25Sc和 0.12Zr(质 

量分数，%)添加到 Al­Mg合金和 Al­Zn­Mg合金中， 

微量  Sc和 Zr与Al会形成两种不同性质的Al3(Sc, Zr) 
化合物， 一种是合金凝固过程中析出的初生 Al3(Sc, Zr) 
粒子，这种粒子为面心立方结构，与基体 α(Al)相同， 

点阵常数与基体也极为相近，这种粒子在合金凝固时 

优先析出，是理想的非均质晶核，能显著细化合金的 

铸态晶粒组织，造成细晶强化。另一种为合金均匀化 

处理过程中大量析出的次生 Al3(Sc，Zr)粒子，细小弥 

散、呈蹄印状且与基体共格。这种粒子强烈钉扎位错 

和亚晶界，阻碍位错的运动和晶界迁移，有弥散强化 

和抑制合金变形后再结晶的作用。在本实验条件下， 

添加的 Sc和 Zr 含量(质量分数，%)分别均仅为 0.1， 

远低于 Al­Sc­Zr 三元相图出现初生 Al3(Sc,  Zr)相的临 

界成分 0.25和 0.12，因此，铸态合金没有晶粒细化的 

效果，但是，次生的弥散细小 Al3(Sc,  Zr)粒子仍然存 

在，这种粒子强烈钉扎位错和亚晶界，阻碍位错的运 

动和晶界迁移，减缓回复和再结晶过程，合金固溶后 

仍保持小角度亚晶组织(见图 14(a))，使合金产生显著 

的亚结构强化和亚晶强化。此外，大量细小弥散与基 

体共格的 Al3(Sc,  Zr)化合物粒子在铝基体中的存在， 

也会产生显著的共格强化和弥散强化。 
3.4.3  主要析出相 η′的强化 

有关Al­Zn­Mg­Cu合金的强化机制至今还没有统 

一的结论，一些学者认为 [36] ，Al­Zn­Mg­Cu 合金主要 

的强化相是 GP 区，即基体组织中刚刚出现 η′相时合 

金的强度最高；有一些学者认为 [37] ，主要强化相是 η′ 
相，而不是 GP 区；还有一些学者认为 [38] ，η′和 η 相 

的沉淀析出使硬度达到峰值。本实验条件下，经  120 
℃、 1 h时效处理后合金基体内观察到GP区的析出(见 

图 15(b))、120 ℃时效 12 h 合金中就可以观察到粒状 

的 η′相，而 120℃时效 24 h 后合金强度达到峰值，所 

以，时效态试验合金主要析出相的强化机制应当以 η′ 
相强化为主。η′相为六方结构，与基体保持半共格， 

变形过程中，位错与粒子的交互作用以切割为主，其 

强化效应随质点体积分数和尺寸的增大而增大；随时 

效时间的延长，晶内析出相  η′逐渐粗化，η′相与基体 

的半共格关系逐渐丧失，位错与粒子的交互作用转变 

为绕过机制，对位错运动的阻碍作用逐渐降低。与此 

同时，晶界一部分 η′相转化为较为粗大的 η 相，晶界 

出现无沉淀析出带并逐渐宽化，因此，合金强度下降 

出现过时效(见图 12(c))。 

综上所述， 时效态 Al­5.4Zn­2.0­Mg­0.25Cu­0.1Sc­ 
0.1Zr试验合金的高强度除小量固溶强化外， 主要来源 

于 η'相析出强化、添加微量 Sc 和 Zr 引起的亚晶强化
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和亚结构强化以及 Al3(Sc, Zr)相的弥散相强化。 

4  结论 

1) 在半连续铸造条件下，熔体冷却速度较快，基 

体近似为过饱和固溶体，晶界处存在富 Zn、Mg 的低 

熔点非平衡相及富  Fe、Si、Mn 难溶杂质相，铸锭需 

要进行均匀化处理。 
2) 在均匀化处理过程中，一方面晶界区域富 Zn、 

Mg 的低熔点非平衡相逐步溶入基体中，另一方面过 

饱和固溶体分解析出非平衡相，随均匀化温度升高， 

析出的非平衡相又会重新回溶入基体中，与此同时， 

固溶体分解析出弥散的纳米级  Al3  (Sc,  Zr)粒子，470 
℃、12 h是研究合金合适的铸锭均匀化制度。 

3) 在铸锭热变形过程中，随试验温度的升高，合 

金强度单调下降，伸长率先升后降，350~400 ℃的范 

围内，合金具有较稳定的热变形抗力和塑性，是试验 

合金锭坯合宜的热加工温度范围。 
4) 铝锌镁钪锆合金板材合适固溶时效处理为 470 

℃、1 h 固溶水淬，随后 120℃、24 h 时效，在此条件 

下， 合金的抗拉强度、 屈服强度和伸长率分别达到 533 
MPa、494 MPa和 15%。 

5)  铝锌镁钪锆合金的强化机制主要为  η′相引起 

的析出强化、添加微量 Sc和 Zr 引起的亚晶强化和亚 

结构强化以及 Al3(Sc, Zr)相的弥散相强化。 
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