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Abstract: The innovations of the characteristic atom potential energy (CAPE) partition function of Au;Cu type ordered
alloys in the systematic science of alloys (SSA) based on first principle (FP)-electronic theory of alloys are concluded in
the three aspects: the characteristic atoms 4" and 4 at centers of the basic clusters {4*".[(/ —i)Au,iCu]} and
{A°" -[(I —i)Au,iCu]} are taken as structural unit sequences, which are used to replace the atomic pairs and atomic
clusters; the potential energy levels ¢ and g result from the influence of coordinative cluster [(7—i)Au,iCu] on
the characteristic atoms, which are used to replace pairwise interaction energies and cluster interaction energies; the
additive law of potential energies of characteristic atoms is established; the average potential energies of alloy phases and
their components are calculated; the unity between the degeneracy factors of arrangements and the potential energy levels
of characteristic atoms is taken into account for establishing CAPE-partition function and calculating configurational

entropy. It reveals some shortcomings of the currently used solution theories and can lay the foundation for establishing
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Gibbs energy partition function.
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Experimental measurement techniques

|

First-principles electron theory of alloys

l

< Enthalpies and volumes of formation for a few alloys >

l

Separated theory of potential energies and volumes of characteristic atoms

Valence bond theory of characteristic crystals
(including valence bond theory of pure metals)

l

Separated theory of thermodynamic properties for characteristic crystals

l

Characteristic atom arrangement crystallography of alloy phases

l

Thermodynamics of mixed characteristic crystals of alloy phases

Comprehensive theory of characteristic crystals for phase
transformation, phase property pattern and phase diagram

E1

PASEIG BRI F — J B e () A6 ) i1 P LR SSA BUSHESL IR B 8

Fig.1 Theoretical levels of SSA framework based on experimental measurement techniques and first principle electron theory of

alloys
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Fig.2 Characteristic atom occupation structure of L1,-Au;Cu compound (a), the first and second sublattice points in coordinative

cluster surrounding the first sublattice point (b), and the first and second sublattice points in coordinative cluster surrounding the

second sublattice point (c)
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Table 1 Heats of formation (A%) and cohesive energies (£.) of L1o-AuCu, L1,-Au;Cu and L1,-AuCu; compounds, Au, and Cu

metals at 0 K calculated by FP-electron theory and measured by experimental techniques

Material PAW Ref.[12] PWP+SO Exp-value
AR/(Jmol ") EJ(Umol™") Ar/(Jmol") E/(Jmol™) Ak/(Jmol") E/Umol')  Ah/(Tmol™")  E/(Jmol™)
AuCu —4 681 423 181 —4 643 422 693 -8 895 437 494 -8 746" 360 746"
AuCu;  —3 699 421 949 -3 593 421168 —6 899 430792 —7 164! 351 164"
Au;Cu  —1647 420397 -1 666 420191 —4 628 437933 -5 736 365 736"
Au 0 419 000 0 419 000 0 438011 0 368 000!
Cu 0 418 000 0 417 100 0 419 187 0 336 000!

1) Calculated from experimental cohesive energy of elemental solids"* and A4,

R2 ORI TR GER

Table 2 Average atomic potential energy functions of alloy phases

No. Function
I
IR s=x,60 +xy6f +Z(7x ](g, +Z((1 ] [.B] -&b)
i=0 i=0
2
2 s=x,60 +xp6k +Z(7x ](s, -&; )+Z{( ; ] xiB}(sf—s,B)
i=0 i=0
3 s—xAso +xp&; +Z(fx ] )+Z{21(11)12(11) }(gg—sf)
! i
4 £ =x,80 +xp6] + (7 (¢ — & )+Z( ](55 -&7)
i i=0
4 o[ 44 Li(1=i) B| B __B
5 &=X, &) +Xp&; +z (7] (&7 _50)"'2 ( 7 ] x; (g —€7)
i=0 i=0
I Ty
6 S—xASO +ngI +Z|:(;] [A:| _5()/1)+Z|:21(11)12(11)xi3:|(£§ _513)
i=0
_ 4 210 R S(I1-i 5\ .5 .5
7 &= X48, +x351 2 (e7 — & )+z x; (&g —&7)
i=0 1 i=0 1
L[ 25— I P Li(1-iY B| B B
8 ‘g_xA‘gO +x351 +z 12 xi (&7 =& )+z 7 x; (&9 —€1)
i=0
4 B 2Ui-i* 4 a4 o210 -i) 5| 5 8
9 E=X,48) +Xp&; +z Iz X; —50)+z ]72)6[- (&g —&7)
i=0

1) ¢ is function related to component and ordering degree, but independent of temperature.
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Fig.3 Critical temperatures T, ((a), (b), (¢)) and configurational entropies s°(x, o,may) differences (d) of Au;Cu- (a), AuCu- (b) and

AuCu;- (c) type ordered alloys with maximum ordering degrees relative to disordered Au(-,Cu, alloys (Dotted lines are

experimental critical temperatures 7., of Au;Cu, AuCu and AuCu; compounds)
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Table 3 Potential energies of 4" and A characteristic

atoms in Au-Cu system

i EM/(Jmol ™) EC/(Jmol ™)
0 —438 011 —437 834
1 —438 159 —434 856
2 —438 605 —432 136
3 —439 347 —429 676
4 —440 387 —427 475
5 —441 723 —425 532
6 —443 356 —423 849
7 —445 286 —422 424
8 —447 513 —421 259
9 —450 037 —420 352
10 —452 858 —419 705
11 —455 976 —419 316
12 —459 391 —419 187

2 AuwCu BHFSE£1H8Y CAPE B
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R4 AuCo MGFEET, BSEH)IAR SHIBCAL R 1 JI[(-)Au, iCu] IR o0 ITHETE
Table 4 Methods for calculating probability » of coordinative cluster [(/—)Au, iCu] surrounding (1)-sublattice point in

AuzCu-type ordered alloys

a)[.(yz) w((ilzi')

Range of i i . - - — — —

i’ ci (P/gl) )(8*t )(Pél) )(t ) (i—i" CA("*’ ) (P;Z))H*(H ) (Plgz))(t*t )
0 0 1 ") (B")° 0 1 P)'e?)’
1 0 1 e (")’ 1 4 (P2 (P!
1 1 8 ®e")'e) 0 1 PP’
D8 p(1)y0 @)\2/ p(2)\2
20 1 (P7) (Ps7) 2 6 (P (P7)
2 1 s (B (B 1 1 (PY (B)
2 2 28 (P (P?)? 0 1 PP PPy

A B A B

30 1 BB 3 1 CRIGR)
0<i<4 3001 8 @y (P! 2 6 (P (P
3228 () (B 1 1 (PY (B
3 3 56 () Py 0 1 PP’
4 0 P (B’ 4 1 P (P?)*
418 (PPY (B 3 4 (P) (Y
4 2 28 () (B 2 6 (PY (B
43 56 POy (R ! 4 (PP (P
4 4 70 @) e 0 1 P)'(e?)’
5 1 8 e ey 4 1 ) (P?)*
52 28 () (B)? 3 1 (P (P
530056 (PP (B 2 6 (PY (B
5 4 70 P R 1 4 (PP (P
55 s6 Py (B’ 0 ! () (A"
6 2 28 (D) (B 4 1 (PPY (B’
6 3 56 (PP (B 3 1 (P (P
6 4 70 GAONCA N 2 6 (PP) ()’
6 5 56 P By 1 4 (P2 (P
, 6 6 28 (P ()" 0 1 P (P?)"
TR T s POV (PPY 4 1 PO ()’
74 70 GAONCA N 3 4 ) P2y
75 56 (PR 2 6 (P (R)
76 28 (P (PP’ 1 1 (Y (B
M1 p)y7 @)\4( p(2y0
77 8 (P") (Pg") 0 1 (P7) (P7)
g8 4 70 GAONCA N 4 1 ) (P?)*
85 56 (PP (B 3 1 (P (P
8 6 28 (P (PP’ 2 6 (PY (B
8 7 8 PP (B 1 4 (PR (B
M8 p()y8 @)\4( p(2y0
8 8 1 (P") (Ps”) 0 1 (P7) (P7)
9 5 56 PP (RY 4 1 P (B
9 6 28 (P (PP’ 3 1 (P (P
9 7 8 () (Y 2 6 ORG
9 8 1 PP (A ! 4 (PR (B
8<i<12 10 6 28 (P ()" 4 1 ) (P?)*
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x5 AwsCu AT FGE T EIZEER Q)RS UM B[ Au, iCullE% o [R5 T7E

Table 5 Methods for calculating probability »® of coordinative cluster [(/—)Au, iCu] surrounding (2)-sublattice point in

AuzCu-type ordered alloys
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Fig.4 Concentrational x'(x,o) and x "(x,o) distributions of characteristic atoms in Au;Cu-type ordered Au . Cu, alloys

corresponding to potential energy levels: (a) x" (x,5) , =0max; (b) X" (x,5) » =0max; (€) x** (x,5) » 6=0.90mas; (d) x° (x,0) , 6=0.90max
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Fig.6 Molar potential energies E(x,o),E*"(x,0) and E®(x, o) of AusCu-type ordered Au-Cu, alloys and their components
as functions of composition and ordering degree: (2) 0=0ax; (b) 6=0.9014¢; (€) 6=0.501ax; (d) 0=00 ¢
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Fig.7 Molar formation enthalpies Ah(x,o),Ar™ (x,0) and AR (x,0) of AusCu-type ordered Au . Cu, alloys and their
components as functions of composition and ordering degree at 0 K: (a) 6=0pax; (b) 6=0.901m,x; (€) 0=00max; (d) Ah(x,o) at different

o values

60
50
40
30
20

s¢/(J+mol-K™")

10

(a)

sAu.C(x7 0') SCu.c(x, 0.)

0 0.2

0.4 0.6
x(Cu)

0.8 1.0

s¢/(J-mol-K ")

Fig.8

1.0

0.4
x(Cu)

8 AusCu HAFHE AugyCu, PHEBMATTHIHER ¢ (x,0) v 52 (x,0) P s (x, o) 5 I FIH FPEE G &

60
(b)
50
~ 40
% 30
g
= 20
“ 10
s%(x, o)
0 Al Cu.c
K% LLC(X, 0.) s L (x’ 0.)
_10 L L 1 1
0 0.2 0.4 0.6 0.8 1.0
x(Cu)
6
(d)
5 L
o~ 4r
i
S 3t
= 1 — =00,
g 2 _ 2_ U:O'l Umax
% 3—0=0.50u
1L 4—0=0.9 0«
/ 5 5— 0= Opax

0.6 0.8
x(Cu)

1.0

Configurational entropies s¢(x,0) , s*%¢(x,0) and s““°(x,o) of AusCu-type ordered Aug_,Cu, alloys and their

components as functions of composition and ordering degree: (a) 6=0max; (b) 6=0.90max; (€) 6=00max; (d) s°(x,0) at different o

values



2500 A G A R

2011 4 10 H

(K115 B R AR FABE S I B RE M DG AR

1 I I
E :EK xl-AuN(I—i)]uAuAu +[le-AuNi]uAuCu +
i=0

i=0

[ixF“N(z —i)]ucmu +[ixf“Ni]ucucu} (25)
i=0 i=0
bR 21y M (25)m %, CAA FLALFI
Bragg-Williams M X U1 F: CAA A,
Au-Cu RIBEREZMN u ™ L uly L ufy™ Fluf O
B (R, o AR SR Ao 0 X N
xMUNn S XU Nng S R xC U Nn (Y s 4E Bragg-
Williams 8 1, Au-Cu F B BEL N 1 o yau ~ Uauca ~
Ucyaa TH Ugyey AT E [, FXT I SR 7 £ 5300k

ix;““N(J—i) N Z[:xl-A“Ni N ix,.c“N(l—i) A ixf“Ni .
i=0 i=0 i=0 i=0

KT, AT LU e RRAE S ETR R 54
FHIA B R 3 e HHREAE R 1 B34 ae i D R

HAE BA B4 AT, wI A R A

1) 7E SSA HEZEH FCC ZEAAE T Au-Cu R [1FEA
SR B TE AL ST AN M A PR, FEA BRI
e M e FEF. ARG BILL “ 4LAr 5 TR
B AN “CALREHITIN . 113 Bl A1 13 P e 4
i J5 7 3 BETT 40 45 B C2 =325 Pl AE J 1 0 i R
uiN L RN T G AR R
fEJE 7 F R A BPX9).

DA A £ A (B A 4k 25 ) 21 G T 1 3 AR
THF A, FTLL, NAZRH 4™ R A4S FEAE I T
A Sy 5 /IS 5 K6 PR R & RS [ A 2546 : - AusCus
AuCu. AuCu; 5%, AusCu. AuCu. AuCu; B
BT G FIEL, BRI IR 7 (3 g &M A
e R IRIX L6145 4 R G (M RS AN B4 o

2) AHEINIH A AT ) CALPHAD-CVM  Fil
FP-CVM HLR (A R 2 Ak s th TR« 15 S5 s 7,
HASREAAAEE R T RHAAS Re T ix L
FRh MAEAEAL, TR Re e T A R ] et
EH R R R PE AR SRAT, SR, CZRIE B IX AN IE
(T, SSA T il ] 435 (RS

5 Z5ig

AuyCu AT P43 SARFAE I 7 A REC 73 B B R T
WL AE N 3 A5 1) B AR R 7 A
(4™ -[(I —i)Au,iCul} 1 {4 -[(I —i)Au,iCu]} FEFIfH

HODMERAE ST A N 4™ D R IT R, BARE T
PR, T R B 5 4 22 PR R AR R 1 HE 271
B 2) LABCATJR FEAAS[( — i) Au, iCu] TR JE H1LVEF
fIE - 3ARE 1 7 2O AR R %) e e AH LA H 5 0RT i
Tz aes A BAEH T, DURFIE R 1 3 e A
REUAR “dloclirxt” A “douJi P31 iR,

P T AR AT P BE AR B 1) “RRAE B - S ae A
EA”, WG AL TR EE. 3) AELRER
FRAE SR IR FE SR IR 1 A RE RE ORI (1) 45 A1 T A ar
Jic 2 PR BRIV L 250 . CAPE it 2 bR A S 2 L
T e A v RS R B2 B CALPHAD-CVM Al
FP-CVM i g & HESE [m) G 5 7T 7> &9 1K) EX-SSA Al
FP-SSA HEXL% &, fif SSA HEALEAT sz (¥ 2 A1)
T2 () A o

REFERENCES

[1] XIE You-qing. Systematic science of alloy[M]. Changsha:
Central South University Press, 2010: 29-48, 405-427,
335-345.

[2] SUNDMAN B, FRIES S G, OATES A W. A thermodynamic
assessment of the Au-Cu system[J]. CALPHAD, 1998, 22:
335-354.

[3] KIKUCHI R. A theory of cooperative phenomena[J]. Phys Rev,
1951, 81: 988—1003.

[4] SUNDMAN B, FRIES S G, OATES A W. A CALPHAD
assessment of the Au-Cu system using the cluster variation
method[J]. Z Metalkd, 1999, 90(4): 267-273.

[S] SATA M, de FONTAINE D, van SCHILFAARDE M.
First-principles study of phase stability of Ti-Al intermetallic
compounds[J]. ] Mater Res, 1993, 8(10): 2554-2568.

[6] OATES W A. Configurational entropies of mixing in solid
alloys[J]. Journal of Phase Equilibria and Diffusion, 2007, 28(1):
79-89.

[71 XIE You-qing, PENG Kun, LIU Xin-bi. Influences of xTi/xAl on
atomic states, lattice constants and potential energy planes of
ordered FCC TiAl-type alloys[J]. Physica B, 2004, 344: 5-20.

[8] XIE You-qing, LIU Xin-bi, PENG Kun, PENG Hong-jian.
Atomic states, potential energies, volumes, stability and
brittleness of ordered FCC TiAl;-type alloys[J]. Physica B, 2004,
353:15-33.

[9] XIE You-qing, PENG Hong-jian, LIU Xin-bi, PENG Kun.
Atomic states, potential energies, volumes, stability and
brittleness of ordered FCC Ti;Al-type alloys[J]. Physica B, 2005,
362: 1-17.

[10] XIE You-ging, TAO Hui-jing, PENG Hong-jian, LI Xiao-bo,
LIU Xin-bi, PENG Kun. Atomic states, potential energies,



#2145 10 WM, 45 FP-SSA HEZLF AusCu B J5& S AR IE JR 7 AR IC 73 s 2L 2501

volumes, stability and brittleness of ordered FCC TiAl, type binary metals and alloys[M]. OH: American Society for Metals,
alloys[J]. Physica B, 2005, 366: 17-37. 1963: 462.

[11] XIE You-qing. Atomic energies and Gibbs energy functions of [14] KITTEL C. Solid state physics[M]. 5th ed. New York: Wiley,
Ag-Cu alloys[J]. Science in China: E, 1998, 41: 146—156. 1976: 74.

[12] OZOLINS V, WOLVERTON C, ZUNGER A. Cu-Au, Ag-Au, [15] BRAGG W H, WILLIAMS E J. The effect of thermal agitation
Cu-Ag and Ni-Au intermetallics: First-principles study of on atomic arrangement in alloys[J]. Proc Roy Soc A, 1934, 145:
temperature-composition phase diagrams and structure[J]. Phys 699-730.

Rev B, 1998, 57: 6427-6442. [16] LUPIS CHP. Chemical thermodynamics of materials{M].

[13] HULTGREN R, DESAI P D, HAWKINS D T, GLEISER M, Amsterdam: North-Holland, 1983: 452—-469.

KELLEY K K. Selected values of thermodynamic properties of (éﬁ&ﬁ B;EJI TIE)

i B R &

WAEI, 1937 fEHE, 1962 AN TR IR B m B, 1961—1964 fEAE MR A a Jm P B L
WP, 1988—1989 4R 114 [ A Wy B RS ARV i) 52 o BT P g 2 8 AR B S A 2l i A
UiT, BRI 4 5K R S S R . AR LW e A SO R R, BB u . BT e e N R AT,
s, B meENKERRZL. SUITEY ARG BMEERE:, I TH “REG SR HEIBHELL” A
CRFIEIRFHEFIR U TR A “ R BRI RS S TR S8 T 200 E K H AR RHERE G000 H A re 44
REHIH, EENAMRRIL 140 Rim, HREE (SRMELRSRIE) F1 (Systematic Science of Alloys) 2
0, R EZRHE R AN g 8 B — S AR 2 T )



