文章编号: 1004-0609(2011)10-2430-18

一维纳米 TiO₂ 的可控合成及其应用的研究进展

吴玉程^{1,2},王 岩¹,崔接武¹,秦永强^{1,2},黄新民^{1,2}

(1. 合肥工业大学 材料科学与工程学院,合肥 230009;2. 安徽省有色金属材料与加工工程实验室,合肥 230009)

摘 要: TiO₂ 是一种重要的多功能无机材料,一维纳米 TiO₂ 材料的可控合成是一个十分复杂的过程。由于一维 纳米 TiO₂材料的存在形式多样(包括纳米纤维、纳米丝、纳米带、纳米棒、纳米线和纳米管等),其可控合成的工 艺方法也很丰富。综述了一维纳米 TiO₂材料可控合成的各种方法,包括静电纺丝法、水热合成法、模板法和阳极 氧化法等;分析合成过程中参数变化对所合成纳米材料结构和形貌的影响规律;回顾和总结了近年来一维纳米 TiO₂材料应用的研究进展;对一维纳米 TiO₂可控合成的研究和应用进行展望,为进一步拓展一维纳米 TiO₂的存 在形式和应用范围提供参考。

关键词: 纳米 TiO₂; 一维结构; 可控合成; 物理化学特性 中图分类号: TB34; O649; O472 文献标志码: A

Recent advances in controllable synthesis of one-dimensional nanostructured TiO₂ and their applications

WU Yu-cheng^{1, 2}, WANG Yan¹, CUI Jie-wu¹, QIN Yong-qiang^{1, 2}, HUANG Xin-min^{1, 2}

(1. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China;

2. Laboratory of Nonferrous Metal Materials and Processing Engineering of Anhui Province, Hefei 230009, China)

Abstract: TiO_2 is one of the most important inorganic materials for its multiple applications. The controllable synthesis of one-dimensional nanostructured TiO_2 (1D-TiO_2) is a very complex process due to the various morphologies of the 1D-TiO_2, such as 1D-TiO_2 nanofiber, nanowire, nanobelt, nanorod, nanoribbon, nanotube. Researchers all around the world have developed a variety of controllable synthesis methods, for instance, electrospinning, hydrothermal treatment, template formation and electrochemical anodization. Recent advances in the controllable synthesis of 1D -TiO_2 and their applications are presented in this paper. The influences of the synthesis parameters on the structures and morphologies of the as-prepared nanomaterials are systematically analyzed during the controllable synthesis process. And we also present the future development of the 1D -TiO_2, providing a reference for the potential morphologies and applications of the 1D-TiO_2 nanomaterials.

Key words: nanostructured TiO₂; one-dimensional nanostructure; controllable synthesis; physical chemistry properties

纳米结构体系是含有丰富科学内涵的一个重要科 学分支,以纳米尺度的物质单元为基础,按一定的规 律构筑一种新的体系。随着目前科学的发展已经可以 实现按照人类意志,利用物理和化学方法人为地将纳 米尺度的物质单元组装、排列可以构成一维、二维和 三维的纳米结构体系,即实现可控合成。纳米结构既 有纳米微粒的量子尺寸效应、表面和界面效应以及宏 观量子隧道效应等特性,又存在由纳米结构组合所引

收稿日期: 2010-04-26; 修订日期: 2011-07-20

通信作者: 吴玉程,教授,博士; 电话: 0551-2901012; E-mail: ycwu@hfut.edu.cn

基金项目:国家自然科学基金重大研究计划培育项目(91023030);国家自然科学基金(51072044,20571022);教育部博士点基金(20100111110012,20060359011);安徽省国际科技合作计划项目(10080703017);中国第 43 批博士后基金(20080430758);第 48 批博士后科学基金 (20100480678)

起的新的效应,如量子耦合效应和协同效应等^[1]。自 从 1991 年日本 NEC 公司 ILJIMA 等^[2]发现了碳纳米管 以来,众多科技领域兴起了对一维纳米材料的研究, 一维纳米材料特殊的电子传输行为、光学特性等物理 性质决定了其在构筑纳米器件等功能性元器件过程中 的重要地位,一维纳米材料成为当前纳米材料科学领 域的前沿和热点,如何实现一维纳米材料的可控合成 是科技工作者们关注的焦点^[3]。TiO₂是一种重要的多 功能无机材料,纳米 TiO,化学性质稳定、无毒,在光 催化降解有机污染物、光催化制氢、太阳能电池、气 敏元件和锂离子电池等方面有着广泛的应用前 景^[4-12]。与 TiO₂纳米颗粒(零维)相比,一维纳米 TiO₂ 具有更大的比表面积、独特的光学和电学特性以及便 于电子传输的几何特征等优势,尤其是在一维纳米 TiO,可控合成的基础上构筑有序纳米阵列薄膜等更有 利于器件化的结构,对于推进一维纳米 TiO,的实际应 用具具有的重要的意义。本文作者综述了国内外一维 纳米 TiO₂ 的可控合成及其在多个领域应用的研究现 状和进展,并对一维纳米 TiO,的改性和应用前景作了 展望。

1 一维纳米 TiO₂ 的可控合成

纳米 TiO₂的一维结构形式主要包括纳米纤维、纳 米棒和纳米管。针对不同的一维结构形态,学者们发 展了多种形式的可控合成方法,以下就一维纳米 TiO₂ 可控合成工艺方法进行了综述。

1.1 TiO₂纳米纤维的合成

TiO₂ 纳米纤维/纳米线是指细长形状,且长径 比≥10 的一种纳米结构形式^[13]。目前,TiO₂ 纳米纤 维/纳米线的合成方法主要有静电纺丝法、水热合成 法、模板法以及其它方法。

1) 静电纺丝法

美国华盛顿大学 LI 和 XIA^[14]于 2003 年首次报道 了利用静电纺丝法合成了具有可控直径和多孔结构的 锐钛矿相 TiO₂纳米纤维:在强电场的辅助作用下,将 含有一定比例四异丙醇钛盐和聚乙烯吡咯烷酮(PVP) 的乙醇溶液通过针状装置喷射出来即形成含有 PVP 和非晶态 TiO₂的复合材料纳米纤维,再经 500 ℃空气 气氛条件下退火即可得锐钛矿 TiO₂纳米纤维。通过调 节四异丙醇钛盐和 PVP 的比例、乙醇溶液浓度、辅助 电场强度和进料速率等参数即可实现直径和多孔结构 均可控的锐钛矿相 TiO₂纳米纤维的合成,合成的 TiO₂ 纳米纤维的形貌如图 1 所示^[14]。该课题组于 2008 年 又报道了通过对静电纺丝法所合成 TiO₂ 纳米纤维进 行多羟基化合物还原性化学浴处理,在纤维表明成功 负载了直径 2~5 nm 的贵金属 Pt 颗粒,并进一步以负 载的 Pt 颗粒为前躯体在纳米纤维表面生长了直径 7 nm、长度 50~125 nm 的 Pt 纳米棒,其形貌如图 2 所 示^[15]。实验结果表明,贵金属 Pt 纳米颗粒和纳米棒负 载之后的 TiO₂ 纳米纤维具有很强的催化活性。

静电纺丝法合成 TiO₂ 纳米纤维工艺相对简单,操 作过程容易控制,目前已被许多研究人员所采用,韩 国 KIM 研究小组于 2010 年报道了静电纺丝法合成 TiO₂纳米纤维过程中组成一维纳米纤维的纳米晶颗粒 的生成规律^[16],探讨了退火温度和时间对静电纺丝法 合成的 TiO₂纳米纤维中纳米晶颗粒形貌的影响规律。 结果表明:所选取的退火温度及退火处理时间对纳米 晶粒的大小和形貌有显著影响,纳米晶粒生长的激活 能为 47.2 kJ/mol。在退火起始阶段,晶粒生长起源于 液态介质的输运扩散成孔;在退火处理后续阶段,晶 粒表面融合扩展则成为晶粒生长的主要机制。

图1 静电纺丝法合成的 TiO₂纳米纤维形貌^[14]

Fig.1 Morphologies of TiO₂ nanofibers synthesized by electrospinning^[14]: (a) Low magnification SEM image of nanofibers before calcination; (b) High magnification SEM image of nanofibers after calcination at 500°C for 3 h

2) 水热合成法

水热法/溶剂热在合成纳米材料尤其是一维纳米 材料中得到了广泛的应用。2006年,圣安德鲁斯大学 BRUCE 课题组采用水热合成工艺合成了 TiO₂ 纳米 线^[17]:将锐钛矿相 TiO₂粉体在强碱性条件下在高压釜 中经 170 ℃水热反应 72 h 后形成一维纳米线,再经过 酸洗、过滤、去离子水清洗、烘干及 400 ℃热处理后 即可得制备锂离子电池阳极材料所需的 TiO₂纳米线; 电池性能测试表明,采用 TiO₂纳米线作为阳极材料后 锂离子电池的容量、充放电性能等均优于常规锂离子 电池的。2010年,YANG 等^[18]也采用水热合成工艺结 合退火处理合成了 TiO₂(B)@锐钛矿杂化纳米线复合 材料(见图 3),利用该复合材料作为电池阳极材料后锂 离子电池性能得到了明显提高: 0.1*C* 循环 100 次后其 可逆电容为 196 mA·h/g,15*C* 循环之后可逆电容为 125 mA·h/g。

图 3 TiO₂(B)@锐钛矿杂化纳米线形貌^[18] Fig.3 Morphology of TiO₂(B)@anatase hybrid nanofibers^[18]

常规水热合成法所获得的纳米线多为无序排列状态,GRIMES课题组于2008年报道了利用水热合成工艺制备了有序排列的TiO₂纳米线^[19]:采用一种低温中性水热反应工艺,利用非极性溶剂和亲水基底之间的界面反应,在FTO导电玻璃基底表面直接生长垂直于基底表面且致密分布的有序排列的单晶TiO₂纳米线阵列,长度可达5µm(见图4);利用所合成的TiO₂纳米线阵列薄膜构造DSSCs电池,性能测试结果表明,在AM1.5标准光照条件下,太阳电池的光电转化效率可达5.02%;且该水热反应条件温和,低温状态下即可完成,为在聚合物等柔性基底上组装有序排列单晶TiO₂纳米线阵列进而构造柔性器件提供了可能性。

3) 模板法

模板法合成纳米结构单元和纳米结构阵列体系 是近年来被广泛应用的一种非常有吸引力的方 法^[3, 20-22],一维纳米阵列通常是借助于多孔氧化铝模 板(Anodic aluminum oxide, AAO)来合成的。2001年, LEI 等^[23]报道了利用氧化铝模板采用溶胶-凝胶法制 备了高度有序的单晶锐钛矿 TiO₂纳米线阵列,该纳米 阵列具有良好的光学特性。2005年,LIU和 HUANG^[24] 报道了利用脉冲电沉积工艺在氧化铝模板中合成了有 序排列的 TiO₂纳米线阵列:以多孔氧化铝阵列薄膜为

Fig.4 Morphologies of single crystalline TiO₂ nanowire arrays^[19]: (a) Top-view image; (b) Cross-sectional FESEM image

模板,采用脉冲电沉积工艺,在氧化铝纳米孔洞内生 长了长度大于 10 μm 的 TiO₂ 纳米线(见图 5),经 500 ℃ 退火 4 h 后,纳米线完全转变为锐钛矿相。

2005年,LEE等^[25]用多孔氧化铝为模板结合浸渍 工艺,在酸性溶液条件下合成了有序排列的TiO₂纳米 线,并研究了该纳米线阵列的静电电容特性。2008年, LIN^[26]以AAO为模板,结合电泳沉积工艺合成了有序 排列的锐钛矿相TiO₂纳米线阵列,并将其应用于光催 化降解罗丹明B,结果表明:利用电泳沉积工艺所合 成纳米线阵列的光催化活性优于通过溶胶-凝胶工艺 所合成纳米线的光催化活性,其主要原因是利用电泳 沉积工艺所合成的纳米线具有更佳的比表面积和能带 宽度。

- 4) 其它方法
- ① 金属钛片表面原位氧化法

2009 年,WU 等^[27]报道了利用 H₂O₂和 NaOH 混 合溶液处理金属钛片而实现钛片表面原位生长纳米线 薄膜,经质子交换和煅烧处理后即完成锐钛矿 TiO₂ 纳米线的合成(见图 6(a)),其形成中 Na⁺起到了至关重 要的作用;所合成的 TiO₂纳米线薄膜具有很强的光催

图 5 模板法合成的 TiO₂ 纳米线形貌^[24]

Fig.5 Morphologies of TiO₂ nanowires synthesized by template formation^[24]: (a) Cross-sectional SEM image; (b) Top-view image

化活性,在降解苯酚的过程中纳米线能够稳定存在。 2011年,HU等^[28]采用水热处理工艺在金属钛片基底 上原位生长了高度纠缠状态的TiO₂纳米线薄膜,直径 为10~20 nm,长度约为100 μm。所制备纳米管薄膜 可以从钛片基底上剥离(见图 6(b)),用于光催化处理 污水或降解医学药物等,具有良好的光催化降解活性。

② 静电纺丝与水热处理复合方法

2011年, MENG 等^[29]报道了静电纺丝法与水热处 理复合方法制备 TiO₂纳米纤维/纳米棒复合结构材料: 采用静电纺丝法制备了纳米纤维,退火处理后获得锐 钛矿相 TiO₂纳米纤维。对所制备 TiO₂纳米纤维进行 水热处理后在纤维表面生长金红石型 TiO₂纳米纤维进行 成了 TiO₂纳米纤维/纳米棒复合结构材料(见图 7)。通 过调整水热处理工艺参数,可以实现纳米棒直径在 10~400 nm、长度在 20 nm~1 µm 范围内的可控合成。 复合结构材料的比表面积可达 20.41 m²/g,具有良好 的光催化活性。

图 6 原位氧化制备的 TiO₂纳米线形貌^[27]和水热处理工艺 法^[28]制备的 TiO₂纳米线薄膜的形貌

Fig.6 Morphologies of TiO₂ nanowire films synthesized by in-situ oxidation(a)^[27] and nanowires by hydrothermal growth Ti substrate(b)^[28]

1.2 TiO₂纳米带的合成

纳米带(nanobelt/nanoribbon)通常指细长条带状纳 米结构,长宽比≥10,一般宽厚比≥3^[13]。近年来,一 维 TiO₂纳米带的合成方法主要有水热合成法、静电纺 丝法和生物模板法等。

1) 水热合成法

2010年,WU等^[30]报道了采用碱性水热合成工艺, 以 TiO₂粉体为前躯体,在 10 mol/L NaOH 水溶液条件 下于高压釜中 200 ℃反应 24 h;水热反应结束后,用 大量去离子水和盐酸溶液反复清洗,直至溶液 pH 值 小于 7 呈弱酸性;清洗之后的样品经 700 ℃煅烧 30 min(升温速率 1 ℃/min)后即可获得宽度 60~400 nm, 厚度 10 nm,长度约 30 µm 的锐钛矿相单晶 TiO₂ 纳米 带。利用此法所合成的 TiO₂ 纳米带具有明显的增强光 催化降解甲基橙能力(见图 8)。

2011年,ZHOU等^[31]报道了在酸性辅助条件下,

Fig.7 Morphologies of nanofibers by electrospinning(a) and TiO_2 hierarchical structures electrospinning/hydrothermal process(b)^[29]

水热合成 TiO₂ 纳米带及进一步 Ag 颗粒负载修饰的 TiO₂ 纳米带:将TiO₂粉体与 10 mol/L NaOH 溶液充分 混合后于高压釜中 180 ℃处理 48 h,充分用去离子水 冲洗水热产物之后,将产物在 0.1 mol/L 的 HCl 溶液 中浸泡 24 的 H₂Ti₃O₇纳米带,再经 600 ℃退火 2 h 即 可得 TiO₂ 纳米带。进一步采用紫外光照射还原法合成 Ag 颗粒负载修饰 TiO₂ 纳米带复合材料,并研究其气 敏传感特性(见图 9)。

2) 静电纺丝法

2010年,YU等^[32]发展了一种静电纺丝法合成TiO₂ 纳米带的工艺,以钛酸四丁酯和PVP为前躯体,充分 混合均匀后注入到喷射器中待用,静电纺丝电压选取 范围为12~22 kV。通过静电纺丝所制备的纳米材料需 在空气中静置1d,以使醇盐充分挥发,退火后即可得 纳米纤维或纳米带。实验表明:空气湿度对于纳米纤 维或纳米带的有序排列程度有明显影响,空气湿度较 低时有利于纳米材料的有序排列;喷射装置的喷丝头 几何形状对所合成一维纳米 TiO₂ 材料的形貌有着至 关重要的决定性作用,圆形喷针头有利于获得纳米纤 维,而扁平状喷针头有利于获得纳米带;纺丝过程中 所施加的电场强度对所制备 TiO₂ 纳米带的有序性和 表面形貌也有一定程度的影响(见图 10)。

图8 碱性水热法合成的 TiO₂纳米带形貌及其光催化降解甲基橙的浓度变化曲线^[30]

Fig.8 Morphology of TiO₂ nanobelts(a) and their photocatalytic properties TiO₂ nanobelts(b)^[30]

图 9 酸性辅助水热合成 TiO₂纳米带及 Ag 负载 TiO₂纳米带形貌^[31]

Fig.9 Morphologies of TiO_2 nanobelts synthesized by acid hydrothermal method(a) and Ag nanoparticles loaded TiO_2 nanobelts(b)^[31]

图 10 静电纺丝法所合成 TiO₂纳米纤维和纳米带形貌^[32]

Fig.10 Morphologies of TiO₂ nanofibers(a) and nanoribbons(b) by electrospinning^[32]

3) 生物模板法

2009 年, HAN 等^[33]研发了一种生物模板法制备 TiO₂空心纳米带的工艺:以含有纳米带状缩氨酸网络 的干凝胶为模板,采用原子层沉积工艺(以四异丙醇钛 盐为前躯体,氨气为反应气体,氩气为载流气体),在 模板上沉积 TiO₂纳米带网络,经 400 ℃退火处理后去 除缩氨酸纳米带模板后即得空心锐钛矿相 TiO₂纳米 带(见图 11)。

1.3 TiO₂纳米棒的合成

纳米棒(Nanorod)呈细棒状结构,一般长径比 ≤10^[13]。近年来科研工作者广泛采用的合成 TiO₂ 纳 米棒的方法主要有水热合成法、模板法、原位氧化法 以及其他方法等。

1) 水热合成法

2005 年 JIANG 等^[34]所在课题组在德国应用化学 杂志报道了水热法合成 TiO₂ 纳米棒可调控的超亲水/ 超疏水特性^[34]:用 NaCl 使水热处理三氯化钛溶液达 到过度饱和状态后,将溶液与玻璃基底一起置于高压 釜中进行 160 ℃条件下水热反应 2 h;水热反应结束之 后将所合成薄膜用去离子水和乙醇充分清洗后即可获 得 TiO₂ 纳米棒(见图 12),室温烘干后置于暗处保存待

用。研究表明: TiO₂纳米棒薄膜具有明显的可逆调控 的表面润湿性,与薄膜分等级的表面微观结构、晶粒 取向和表面感光特性有密切关系。

2009年,LIU等^[35]首次报道了利用水热合成工艺 在 FTO 导电玻璃基底上直接合成了有序排列单晶 TiO₂纳米棒(见图 13),并研究了其在染料敏化太阳电 池中(Dye-sensitized solar cells, DSSCs)中应用时优异 的光电转换性能:利用水热合成法在透明 FTO 导电玻 璃基底上生长大面积有序排列单晶 TiO₂ 纳米棒阵列 薄膜,通过调整纳米棒生长时间、温度、试剂浓度、 pH 值和添加剂类型等反应参数可以实现对纳米棒直 径、长度及纳米棒分布密度的可控合成。研究表明: FTO 基底与金红石型 TiO₂ 之间的微量晶格失配对单 晶 TiO₂纳米棒的成核及生长起到了关键作用。将所制 备有序排列的单晶 TiO₂纳米棒阵列薄膜组装 DSSCs, 并进行性能测试,结果表明采用长度 4 µm 的 TiO₂纳 米棒作为光阳极的 DSSCs,其光电转换效率达 3%。

图 12 TiO₂纳米棒形貌及其超亲水/超疏水特性^[34]

Fig.12 Morphology of TiO_2 nanorods (a) and their super-hydrophobicity/superhydrophilicity transition properties $((b), (c))^{[34]}$

图 13 FTO 导电玻璃基底上有序排列 TiO₂ 纳米棒^[35] Fig.13 TiO₂ nanorod arrays on FTO substrate^[35]

2011 年,WANG 等^[36]在 LIU 的研究基础上进一 步采用液相化学生长工艺合成了分支状金红石 TiO₂ 纳米棒(见图 14):常规水热合成工艺在 FTO 导电玻璃 基底上制备了有序排列的金红石型 TiO₂ 纳米棒阵列, 进而将纳米棒阵列置于 0.2 mol/L TiCl₄溶液中密封静 置 6~24 h,即采用液相化学生长工艺在纳米棒阵列表 面生长细小分支状结构,所制备的分支状 TiO₂ 纳米棒 阵列薄膜在 DSSCs 中表现出 10.05 mA/cm²短路电流 密度和 3.75%的光电转换效率,是用常规水热合成纳 米棒阵列构造电池效率的 3 倍,其主要原因是分支状 TiO₂纳米棒纳米结构不仅有利于光生载流子产生和传 输,且分枝状结构具有更大的比表面积,有利于对染 料的吸附。

2) 模板法

2009 年,LI 等^[37]尝试了一种利用聚苯乙烯 (Polystyrene, PS)单层小球模板法结合脉冲激光沉积 (Pulsed laser deposition, PLD)工艺合成了周期性排列 TiO₂六角纳米棒(见图 15),并研究了其场发射特性: 以单层 PS 小球为模板,采用 PLD 工艺制备了周期排 布的六角形 TiO₂纳米棒阵列,纳米棒排列的周期性长 短可以通过改变 PS 小球尺寸实现可控调节,纳米棒 之间间距可以通过改变 PLD 过程中中气氛压力来实

图 14 常规 TiO₂纳米棒和分支状 TiO₂纳米棒形貌^[36] Fig.14 Morphologies of bear(a) and nano-branched(b) TiO₂ nanorod arrays^[36]

现。场发射特性研究结果表明:垂直排列的六角形 TiO₂ 纳米棒阵列的场发射性能优于颗粒薄膜或顶端团聚成 束状的 TiO₂纳米棒阵列。进一步参数优化实验结果表 明:短周期和长距离六角形 TiO₂纳米棒阵列具有最佳 的场发射特性。

3) 原位氧化法

2004 年,PENG 和 CHEN^[38]在高温条件下对金属 钛基底直接氧化实现了 TiO₂ 纳米棒的合成:将金属钛 基底在高温条件下氧化,采用丙酮气体为氧源,可以 实现在金属钛基底上直接生长高度有序的金红石相 TiO₂ 纳米棒阵列。进一步研究表明:纯氧、低浓度氧 气与氩气混合气体、丙酮气体分别作为钛氧化所需的 氧源时,所形成纳米结构的亲水/疏水特性发生了明显 变化。

4) 其它方法

2009 年,WOLCOTT 等^[39]利用 OAD 沉积工艺 (Oblique-angle deposition)在 ITO 导电玻璃基底表面制 备了密排有序锐钛矿相 TiO₂ 纳米棒阵列,UV/Vis 表

图 15 六角形 TiO₂纳米棒阵列形貌^[37]

Fig.15 Morphologies of hexagonal TiO₂ nanorod arrays^[37]: (a) Top view; (b) Cross-sectional view

明该纳米棒阵列的吸收特性明显红移至可见光区(约400 nm),采用 Mott-Schottky 测试纳米棒阵列的载流 子 密 度 为 4.5×10^{17} cm⁻³。光 电 化 学 电 池 (Photoelectrochemical cells, PEC)测试结果表明,该纳 米棒阵列具有很强的光电化学裂解水制备氢的能力。

2010年,ZENG等^[40]发展了一种以过氧化钛配合物(Peroxotitanium complex, PTC)为前躯体,在低温 95 ℃、常压条件下反应 30 h 后,在 FTO 导电玻璃基底表面上生长了有序排列的金红石相 TiO₂ 纳米棒阵列薄膜。在该工艺所制备的纳米棒阵列作为 DSSCs 光阳极材料,表现出更有效的电荷聚集传导能力,有助于提高 DSSCs 的光电转换效率。

1.4 TiO₂纳米管的合成

纳米管(nanotube)呈细长形状并具有空心结构, 即细管状结构^[13]。数年来,国内外学者基于理论与实 践相结合的原则,探索了多种合成一维TiO₂纳米管方 法,主要包括水热合成法、模板法和阳极氧化法等。

1) 水热合成法

1998年, KASUGA 等^[41]首次发现了以 TiO₂ 纳米

颗粒为前躯体, 经 10 mol/L NaOH 强碱性水溶液水热 处理后即实现合成直径约为 8 nm、长度约为 100 nm 的 TiO₂ 纳米管,所合成的 TiO₂ 纳米管比表面积高达 400 m²/g。2004 年,BAVYKIN 等^[42]又进一步采用 HRTEM 和低温氮气吸附表征方法,系统研究了碱性 水热处理所合成 TiO₂ 纳米管形貌与工艺参数之间的 关系,提出了碱性水热合成过程中 TiO₂ 纳米管形成的 可能机理是层状纳米片的卷曲,发生卷曲的动力源自 结晶和扩展过程中所形成的应力。随着水热处理温度 的升高(120~150 ℃),所合成纳米管的直径增大,温度 继续升高则形成实心纳米纤维状结构。随着 TiO₂ 与 NaOH 摩尔比的增大,纳米管平均直径增大而比表面 积减少。

2) 模板法

2001 年, MICHAILOWSKI 等^[43]采用氧化铝模板 (AAO)法成功合成了有序紧密排列的 TiO₂ 纳米管阵 列:以异丙醇钛盐为原料,通过压力浸入法使得异丙 醇钛盐进入多孔氧化铝模板内部,然后 500 ℃高温氧 化分解孔内反应物,如此反复多次之后即可获得直径 50~70 nm 的锐钛矿相 TiO₂ 纳米管阵列(见图 16),所

图 16 AAO 模版的 FESEM 图像和模板法合成的有序紧密 排列 TiO₂纳米管阵列形貌^[43]

Fig.16 FESEM image of AAO template(a) and morphology of highly ordered TiO_2 nanotube arrays by template method(b)^[43]

合成纳米管管口与氧化铝模板多孔形状有较强的依赖 关系。李晓红等^[44]于 2001 年同样以多孔氧化铝薄膜 为模板,采用溶胶-凝胶法成功制备了长度、孔径和 管壁厚度均可控的锐钛矿相 TiO₂ 纳米管。

2009 年, CHAROENSIRITHAVORN 等^[45]发展了 另一种模板法合成有序排列的 TiO₂ 纳米管阵列:首先 在 FTO 导电玻璃基底上生长 ZnO 纳米线阵列,然后 以 ZnO 纳米线阵列薄膜为模板,采用液相沉积(Liquid phase deposition, LPD)工艺合成了有序排列的 TiO₂ 纳 米管阵列(见图 17)。

图 17 ZnO 纳米线阵列和 TiO₂ 纳米管阵列形貌^[45] Fig.17 Morphologies of ZnO nanorods(a) and TiO₂ nanotubes(b) arrays^[45]

3) 阳极氧化法

2001年,美国宾州州立大学 GRIMES 课题组首次 提出阳极氧化工艺制备高度有序的 TiO₂ 纳米管阵列 薄膜^[46]:将高纯金属钛片(99.99%)为阳极置于含有 0.5%~3.5%(质量分数)HF 的水溶液电解液中,以铂片 为阴极,在 3~40 V 直流电压条件下进行阳极氧化反 应。所合成 TiO₂ 纳米管阵列管径一致性较好,管口呈 开口状态,底端封闭成圆球状,与多孔氧化铝形貌相 似(见图 18)。随着阳极氧化电压的增大,纳米管管径 变化范围为 25~60 nm,而纳米管长度随时间变化不明 显。

阳极氧化法制备有序排列 TiO₂ 纳米管阵列一经 提出,便引起了各国学者的普遍关注。德国 SCHMUKI

图 18 阳极氧化法所合成 TiO₂ 纳米管形貌^[46] **Fig.18** Morphologies of anodic TiO₂ nanotube arrays^[46]: (a) Cross-sectional view; (b) Top view

小组于 2005 年发表论文^[47],认为采用阳极氧化工艺 制备 TiO₂纳米管阵列经历了几个阶段,但仍然存在有 待进一步解决的问题。他们通过改进阳极氧化工艺所 使用的电解液组成(以具有很高粘性的丙三醇为溶 剂),克服了阳极氧化过程中电解液体系自身 pH 值的 波动和纳米管管底 H⁺聚集等不利影响,实现了管壁光 滑的 TiO₂纳米管阵列薄膜的合成(见图 19),且该工艺 合成的纳米管具有高达 175 的长径比。

根据文献[14]报道,采用无机水溶液电解液体系 和有机电解液体系所制备的 TiO₂ 纳米管阵列薄膜随 着纳米管长度的增大,由于毛细管现象的存在,纳米 管顶端易出现团聚现象,且常规阳极氧化工艺所合成 TiO₂ 纳米管阵列薄膜表面极易形成凹凸不平的结构。 2009 年,WANG 等^[49]提出了一种这种缺陷的二次阳 极氧化工艺:通过将一次阳极氧化所形成的 TiO₂ 纳米 管阵列薄膜去除后在钛片基底上形成碗状印迹,然后 再对钛片进行二次阳极氧化,所获得 TiO₂ 纳米管阵列 均垂直于钛片基底分布,无顶端团聚现象;且所合成 的 TiO₂ 纳米管阵列薄膜表面平整,避免了常规阳极氧 化工艺所合成 TiO₂ 纳米管阵列薄膜表面凹凸不平的 缺陷(见图 20)。

图 19 管壁光滑的 TiO₂纳米管阵列形貌^[47]

图 20 二次阳极氧化 TiO₂纳米管阵列形貌^[49]

Fig.20 Morphologies of TiO₂ nanotube arrays via two-step anodization^[49]: (a) Low magnification; (b) High magnification

本课题组在阳极氧化法可控合成 TiO, 纳米管阵 列薄膜方面也做了大量工作:通过对阳极氧化所获得 TiO₂纳米管阵列进行水热处理,获得了暴露高能面的 单晶锐钛矿 TiO₂纳米斗,并自组装成为微米球^[50],所 暴露的高能晶面(001)和(101)大大提高了纳米材料的 光催化活性(见图 20)。采用乙炔气氛对阳极氧化 TiO2 纳米管阵列进行退火处理后,合成了碳掺杂改性TiO2 纳米管阵列复合材料薄膜^[51],光催化降解甲基蓝实验 表明,碳掺杂改性后 TiO₂纳米管阵列薄膜光催化活性 得以增强;通过在常规阳极氧化电解液中添加一定量 的碳酸钠添加剂^[52-53],利用添加剂的水解呈现弱碱性 的化学特性,抑制阳极氧化过程中电解液的酸化,加 速 TiO₂纳米管的正向生长,同时抑制 TiO₂纳米管管 口处被化学溶解的速率,从而实现了快速阳极氧化合 成有序排列 TiO₂ 纳米管阵列薄膜;在 TiO₂ 纳米管阵 列内引入 CdS 等窄禁带半导体材料^[54],实现对 TiO2 纳米管阵列的修饰改性(见图 22),增强其光催化和光 电特性。

2 一维纳米 TiO₂ 的应用

一维纳米 TiO₂ 由于其特有的物理化学特性, 在很 多领域有潜在的应用价值。近年来, 科研工作者们对 一维纳米 TiO₂ 在太阳能电池^[35, 55-60]、光催化降 解^[30, 61-63]、光裂解水制氢^[39, 64-67]、传感材料^[31, 68-76]、 锂离子电池^[17, 77-78]以及其它领域的应用进行了广泛 的研究。

2.1 太阳能电池

2006 年, MOR 所在课题组^[56]首次利用在导电玻 璃基底上通过阳极氧化工艺合成直径 46 nm、壁厚 17

图 21 阳极氧化 TiO₂纳米管及水热处理形成的纳米斗形貌^[50]

Fig.21 Anodic TiO₂ nanotube arrays((a), (b)) and TiO₂ nano-dou by hydrothermal treatment of TiO₂ nanotube $arrays((c), (d))^{[50]}$: (a), (c) Low magnification; (b), (d) High magnification

图 22 TiO₂纳米管和 CdS 纳米颗粒修饰 TiO₂纳米管形貌^[54]

Fig.22 Morphologies of TiO₂ nanotubes(a) and CdS-nanoparticles loaded TiO₂ nanotubes(b)^[54]

nm、长度 360 nm TiO₂ 纳米管阵列薄膜,将其作为光阳极材料组装了 DSSCs,获得的电池光电转换效率为 2.9%,并预言了一定程度上增加 TiO₂ 纳米管的长度可以增大 DSSCs 的光电转换效率。2009 年, VARGHESE

等^[57]又进一步克服了在导电玻璃基底上阳极氧化制 备 TiO₂纳米管阵列的长度瓶颈,成功合成了长度达 33 μm 的 TiO₂纳米管阵列,利用此法所合成纳米管阵 列薄膜构造 DSSCs 的光电转换效率高达 6.9%。2009 年,YANG 等^[58]报道了利用单晶金红石型 TiO₂纳米棒 为光阳极材料组装 DSSCs 后,电池也获得了高达 6.03%的光电转换效率。2010 年,JOSHI 等^[59]使用传 统 TiO₂ 颗粒与静电纺丝法所合成 TiO₂ 纳米纤维形成 的复合材料作为 DSSCs 的光阳极材料,获得了高达 8.8%的光电转换效率,比利用传统 TiO₂ 颗粒薄膜为光 阳极材料 DSSCs 的光电转换效率增大了 44%。2011 年,LI 等^[60]发展了一种将阳极氧化合成的 TiO₂ 纳米 管阵列薄膜从钛片基底上剥离之后转移至导电玻璃基 底上,克服了金属钛片基底不透明和在 FTO 导电玻璃 基底上阳极氧化合成 TiO₂ 纳米管阵列较难实现的技 术瓶颈,利用转移之后的 TiO₂ 纳米管阵列薄膜组装 DSSCs 后获得了 6.24%的光电转换效率。

2.2 光催化降解

2007年,陶海军等^[61]采用恒压直流阳极氧化法制 备具有规则排列的 TiO₂纳米管阵列,并研究其在空气 热处理过程中的晶型转变,同时用甲基橙的降解过程 表征其光催化性能。光催化实验表明,在氧化电压为 20V、氧化时间为 20 min 时获得的纳米管阵列经过 400 热处理后,在40min的光照时对甲基橙的光催化降解 率高达 99.6%。2008 年,李海龙等^[62]以金红石相二氧 化钛粉体为原料,采用水热法合成了 TiO,纳米管,在 碱性条件下与AgNO3的乙二醇溶液反应,得到表面载 Ag的TiO2纳米管(Ag-TiO2)。Ag-TiO2在可见光区域表 现出较强的吸收,光催化降解甲基橙实验结果表明, Ag-TiO₂的光催化活性较金红石相二氧化钛粉体和纯 TiO2 有着显著的提高。2011 年,温艳媛和丁旵明^[63] 采用水热合成法和双氧水处理制备了具有锐钛矿相的 TiO₂纳米管,然后通过沉淀和光化学反应将 Ag@AgCl 纳米粒子负载于其上, 制得 TiO₂ 纳米管负 载的表面等离子体光催化剂,该催化剂对亚甲基蓝分 子具有很强的吸附能力,可见光下照射1h后即可完 全降解脱色,该光催化剂重复使用5次后,亚甲基蓝 脱色率仍保持在90%以上。

2.3 光裂解水制氢

2005 年, MOR 所在课题组^[64]报道了在紫外光照 射条件下,阳极氧化所合成有序排列 TiO₂纳米管阵列 薄膜的光裂解水现象。利用 TiO₂纳米管阵列薄膜组成 的光电化学电池在紫外光照射下裂解水制氢量达 960 µmol/(h·W),转换效率为 6.8%。2006 年, PARK 等^[65] 利用具有高比表面积的碳掺杂改 TiO₂ 纳米管阵列在 太阳光照射下裂解水制氢。实验表明:碳掺杂改性后 的 TiO₂ 纳米管阵列在太阳光照条件下具有强化的裂 解水分子的能力,光电流密度高于纯 TiO₂ 纳米管阵列 的,约为 P25 纳米颗粒在白光照射下所产生光电流密 度的 20 倍。2008 年,ZHANG 等^[66]发展了一种利用 CdS/TiO₂ 纳米管光裂解水制氢的方法:在阳极氧化法 所合成有序 TiO₂ 纳米管内利用化学浴沉积工艺合成 了 CdS 修饰改性 TiO₂ 纳米管阵列复合材料,该复合 材料经紫外光照射、在 1.0 V 电压、0.1 mol/L Na₂S + 0.04 mol/L Na₂SO₃电解液条件下,裂解水制氢的速率 为 245.4 μL/(h·cm²)。2011 年,SUN 等^[67]系统研究了 退火处理温度对阳极氧化 TiO₂ 纳米管阵列薄膜的光 裂解水制氢效率的影响。结果表明:450 ℃条件下退 火的 TiO₂ 纳米管阵列具有最优光能转换效率 4.49%, 光裂解水制氢效率为 122 μmol/(h·cm²)。

2.4 传感材料

2003 年, VARGHESE 所在课题组^[69-70]首次发现 了阳极氧化 TiO₂ 纳米管阵列薄膜在氢气氛围中电阻 值发生剧烈变化的现象,即 TiO₂纳米管阵列的气敏特 性, 290 ℃时, 内径 22 nm 的 TiO₂纳米管阵列在 1× 10⁻³ 氡气气氛中的电阻值变化率达 10⁴, 研究还表明阳 极氧化 TiO,纳米管阵列的氢敏特性检测下限为 1× 10⁻⁴ 甚至更低。2006 年,该课题组^[71]利用数微米长的 TiO2 纳米管阵列薄膜检测 1×10-3 氢气气氛, 室温状 态下其灵敏度高达108.7,这是迄今为止关于氢气检测 的最高灵敏度。2011 年, ALVES 等^[73]利用水热工艺 合成的 TiO,纳米管研究了其氡敏特性,结果表明:水 热合成 TiO₂纳米管有良好的氢敏特性,尤其是在室温 条件下也可以实现氢敏检测。25~300 ℃温度范围内的 导电特性测试结果显示: 当t>100 ℃时, TiO₂纳米管 的导电特性主要机制为热激发的电子导电;而当 t< 100 ℃时,主要机制则变为质子传输。所以,在低温 条件下 TiO₂ 纳米管的氡敏特性主要与材料自身质子 状态有关,而质子的状态决定于 TiO₂纳米管表面羟基 基团的数量。

作为一类特殊的传感材料,一维纳米 TiO₂ 不仅可 以应用于氢气检测,经适当处理后同样适用于对氧气 的监测^[72];还可以应用于湿度传感^[74]、生物传感^[75-77] 和 UV 传感器^[78]等领域。

2.5 锂离子电池

2004 年, 聂茶庚等^[79]利用水热法合成一维纳米 TiO₂(B)纳米带, 相关储锂性能表征研究结果表明: TiO₂(B)纳米带具有相当高的可逆嵌/脱锂容量, 可达 265 mA·h/g, 是一种有发展前景的锂离子电池材料。 2011年, DONG 等^[80]报道了利用水热法在金属钛片基 底合成 c 轴生长的金红石型 TiO₂ 纳米棒阵列,作为阳 极材料这种纳米棒阵列可以有效提高其锂离子电池性 能: 经 15 μ A/cm², 50 次循环后可逆电容量达 133 μ A·h/cm², 是常规 TiO₂ 阳极材料电容量的 10 倍。

2.6 其它领域

一维纳米 TiO₂ 在超级电容器^[81-82]、光子晶体^[83]、 超亲水/超疏水转换膜^[34, 84]、磁性材料^[85]、场发射器件 材料^[37]、光生阴极保护材料^[86]等诸多领域都有着广泛 的应用。相信基于一维纳米 TiO₂ 特殊的物理化学特 性,科研工作者们将来还有可能开发出更多的应用实 例。

3 结论与展望

1) 一维纳米 TiO₂ 的存在形式多种多样,为了实现可控合成特定结构的一维纳米 TiO₂材料,科研工作者们发展了诸如静电纺丝法以及水热合成法、模板法、电化学阳极氧化法等物理化学方法;纳米纤维、纳米带、纳米棒和纳米管由于各自特定的形状和结构特征而呈现出特定的物理化学性质,决定了不同结构形式的一维纳米 TiO₂材料具有多种可能的应用领域。

2) 虽然目前针对一维纳米 TiO₂ 材料的可控合成 已经发展出来了诸如静电纺丝法、水热合成法、模板 法、电化学阳极氧化法等各种相对可控的物理化学方 法,但大多仅停留在发现和利用此方法的层次上,尚 缺乏对各种可控合成方法更深层次问题的理解,有待 于进一步从物理化学本质角度、分子热力学和分子动 力学等角度研究可控合成方法过程中一维纳米 TiO₂ 材料纳米结构体系形成的机理,以实现更高层次和更 广范围内的可控合成,开发新的纳米结构形式和复合 结构体系。

3) 对一维纳米 TiO₂ 材料可控合成方法如水热合成法、电化学阳极氧化法所使用的介质体系(强碱性水溶液或电解液)反应前后成分变化几乎没有关注,大多数研究只关注所合成产品的成分、组成相和微观形貌; 对介质体系的进一步研究有助于理解反应过程的本质,拓展可控合成工艺方法的实现形式。

4) 目前关于一维纳米 TiO₂ 材料的应用多数仅停 留在实验室阶段,随着研究深度和广度的进一步扩展, 其应用领域范围还将日益扩大;对一维纳米 TiO₂ 材料 的微纳器件化、产业化必将成为未来数十年科研工作 者和实业家所共同关注的热点话题,相信未来一维纳 米 TiO₂ 材料必将得到更广泛的重视和应用。

REFERENCES

 [1] 张立德, 牟季美. 纳米材料和纳米结构[M]. 北京: 科学出版 社, 2001: 411-430.

ZHANG Li-de, MOU Ji-mei. Nanomaterials and nanostructures[M]. Beijing: Science Press, 2001: 411–430.

- [2] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56–58.
- [3] 张立德,解思深.纳米材料和纳米结构:国家重大基础研究项目新进展[M].北京:化学工业出版社,2004:113-165.
 ZHANG Li-de, XIE Si-shen. Nanomaterials & nanostructures: Research progress of major state basic research development program of China[M]. Beijing: Chemistry Industry Press, 2004: 113-165.
- [4] ASAHI R, MORIKAWA T, OHWAKI T, AOKI K, TAGA Y. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269–271.
- [5] LINSEBIGLER A L, Lu G Q, YATES J T. Photocatalysis on TiO₂ surfaces: Principles, mechanisms and selected results[J]. Chemical Reviews, 1995, 95: 735–758.

[6] 吴玉程,刘晓璐,叶 敏,解 挺,黄新民. 碳纳米管负载纳 米 TiO₂ 复合材料的制备及其性能[J]. 物理化学学报, 2008, 24(1): 97-102.
WU Yu-Cheng, LIU Xiao-Lu, YE Min, XIE Ting, HUANG Xin-Min. Preparation and properties of carbon nanotube-TiO₂

nanocomposites[J]. Acta Phys Chim Sin, 2008, 24(1): 97–102.

- [7] 黄绵峰,郑治祥,徐光青,吴玉程. 氮和硫共掺杂纳米TiO₂光 催化剂的制备及可见光活性研究[J]. 材料热处理学报, 2009, 30(3): 14-18.
 HUANG Mian-feng, ZHENG Zhi-xiang, XU Guang-qing, WU Yu-cheng. Preparation and visible-light activity of N, S-co-doped nano-TiO₂ photocatalys[J]. Transactions of Materials and Heat Treatment, 2009, 30(3): 14-18.
- [8] 宋林云,李 云,吴玉程,叶 敏,解 挺,黄新民.介孔 TiO₂的制备及其光催化性能研究[J].武汉理工大学学报, 2007,29(10):66-69.

SONG Lin-yun, LI Yun, WU Yu-cheng, YE Min, XIE Ting, HUANG Xin-min. Preparation and photocatalytic activity of mesoporous titania[J]. Journal of Wuhan University of Technology, 2007, 29(10): 66–69.

- [9] CHEN Xiao-bo, MAO S S. Titanium dioxide nanomaterials: Synthesis, properties modifications, and applications[J]. Chemical Reviews, 2007, 107: 2891–2959.
- [10] ROY P, BERGER S, SCHMUKI P. TiO₂ Nanotubes: Synthesis and applications[J]. Angewandte Chemie International Edition, 2011, 50: 2904–2940.

[11] 盘荣俊. TiO₂ 纳米管阵列的可控沉积改性及其性能研究[D].

2444

合肥: 合肥工业大学, 2010: 1-24.

PAN Rong-jun. Controllabe deposition within titanium dioxide nanotubes and properties[D]. Hefei: Hefei University of Technology, 2010: 1–24.

- [12] 许珂敬,杨新春,李正民. 离子掺杂对纳米 TiO2 薄膜光催化 性能的影响[J]. 中国有色金属学报,2006,16(5):847-852.
 XU Ke-jing, YANG Xin-chun, LI Zheng-min. Influence of different ion dopants on photocatalysis of nano-TiO₂ coating film[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(5): 847-852.
- [13] 解 挺, 焦明华, 俞建卫, 吴玉程, 张立德. 准一维纳米材料 制备方法的研究现状和发展趋势[J]. 材料科学与工程学报, 2006, 24(2): 311-315.

XIE Ting, JIAO Ming-hua, YU Jian-wei, WU Yu-cheng, ZHANG Li-de. Research progress and tendency in synthesis of one-dimensional nanostructures[J]. Journal of Materials Science & Engineering, 2006, 24(2): 311–315.

- [14] LI Dan, XIA You-nan. Fabrication of titania nanofibers by electrospinning[J]. Nano Letters, 2003, 3(4): 555–560.
- [15] FORMO E, LEE E, CAMPBELL D, XIA You-nan. Functionalization of electrospun TiO₂ nanofibers with Pt nanoparticles and nanowires for catalytic applications[J]. Nano Letters. 2008, 8(2): 668–672.
- PARK J Y, CHOI S W, ASOKAN K, KIM S S. Growth of nanograins in TiO₂ nanofibers synthesized by electrospinning[J]. Journal of Nanoscience and Nanotechnology, 2010, 10: 3604–3608.
- [17] ARMSTRONG G, ARMSTRONG R, BRUCE P G, REALE P, SCROSATI B. TiO₂(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO₄ or LiNi_{0.5}Mn_{1.5}O₄ cathodes and a polymer electrolyte[J]. Advanced Materials, 2006, 18: 2597–2600.
- [18] YANG Zun-xian, DU Guo-dong, GUO Zai-ping, YU Xue-bin, CHEN Zhi-xin, GUO Tai-liang, SHARMA N, LIU Hua-kun. TiO₂(B)@anatase hybrid nanowires with highly reversible electrochemical performance[J]. Electrochemistry Communications, 2011, 13: 46–49.
- [19] FENG Xin-jian, SHANKAR K, VARGHESE O K, PAULOSE M, LATEMPA T J, GRIMES C A. Vertically aligned single crystal TiO₂ nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications[J]. Nano Letters, 2008, 8(11): 3781–3786.
- [20] MASUDA H, FUKUDA K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J]. Science, 1995, 268: 1466–1468.
- [21] MASUDA H, ASOH H, WATANABE M, NISHIO K, NAKAO M, TAMAMURA T. Square and triangular nanohole array architectures in anodic alumina[J]. Advanced Materials, 2001, 13(3): 189–192.
- [22] 吴玉程,马杰,解挺,鄢波,黄新民,李广海,张立德.

氧化铝纳米有序阵列模板的制备工艺及应用[J]. 中国有色金属学报, 2005, 15(5): 680-687.

WU Yu-cheng, MA Jie, XIE Ting, YAN Bo, HUANG Xin-min, LI Guang-hai, ZHANG Li-de. Fabrication and application of alumina nanoscale ordered array template[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(5): 680–687.

- [23] LEI Y, ZHANG L D, MENG G W, LI G H, ZHANG X Y, LIANG C H, CHEN W, WANG S X. Preparation and photoluminescence of highly ordered TiO₂ nanowire arrays[J]. Applied Physics Letters, 2001, 78(8): 1125–1127.
- [24] LIU Su-qin, HUANG Ke-long. Straightforward fabrication of highly ordered TiO₂ nanowire arrays in AAM on aluminum substrate[J]. Solar Energy Materials & Solar Cells, 2005, 85: 125–131.
- [25] LEE Jae-young, CHOI Jin-sub, LEE Jaek-wang, CHOI Sang-kyo, CHUN Hee-dong. Electrostatic capacitance of TiO₂ nanowires in a porous alumina template[J]. Nanotechnology, 2005, 16: 1449–1453.
- [26] LIN Yu. Photocatalytic activity of TiO₂ nanowire arrays[J]. Materials Letters, 2008, 62: 1246–1248.
- [27] WU Ya-hui, LONG Ming-ce, CAI Wei-min, DAI Si-di, CHEN Chao, WU De-yong, BAI Jing. Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate[J]. Nanotechnology, 2009, 20: 185703.
- [28] HU An-ming, ZHANG Xu, OAKES K D, PENG Peng, ZHOU Y N, SERVOS M R. Hydrothermal growth of free standing TiO₂ nanowire membranes for photocatalytic degradation of pharmaceuticals[J]. Journal of Hazardous Materials, 2011, 189: 278–285.
- [29] MENG Xian-hui, SHIN Dong-wook, YU Seong-man, JUNG Jae-hun, KIM Hong-ik, LEE Hyun-myuong, HAN Young-ho, BHORASKAR V, YOO Ji-beom. Growth of hierarchical TiO₂ nanostructures on anatase nanofibers and their application in photocatalytic activity[J]. Cryst Eng Comm, 2011, 13: 3021–3029.
- [30] WU Nian-qiang, WANG Jin, TAFEN D N, WANG Hong, ZHENG Jian-guo, LEWIS J P, LIU Xiao-gang, LEONARD S S, MANIVANNAN A. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO₂ (101) nanobelts[J]. Journal of the American Chemical Society, 2010, 132: 6679–6685.
- [31] ZHOU Wei-jia, DU Guo-jun, HU Pei-guang, LI Guo-hong, WANG Dong-zhou, LIU Hong, WANG Ji-yang, BOUGHTON R I, LIU Duo, JIANG Huai-dong. Nanoheterostructures on TiO₂ nanobelts achieved by acid hydrothermal method with enhanced photocatalytic and gas sensitive performance[J]. Journal Materials Chemistry, 2011, 21: 7937–7945.
- [32] YU Qiao-zhen, WANG Mang, CHEN Hong-zheng. Fabrication of ordered TiO₂ nanoribbon arrays by electrospinning[J]. Materials Letters, 2010, 64: 428–430.
- [33] HAN T H, OH J K, PARK J S, KWON S H, KIM S W, KIM S O.

Highly entangled hollow TiO₂ nanoribbons templating diphenylalanine assembly[J]. Journal of Materials Chemistry, 2009, 19: 3512–3516.

- [34] FENG Xin-jian, ZHAI Jin, JIANG Lei. The fabrication and switchable superhydrophobicity of TiO₂ nanorod films[J]. Angewandte Chemie International Edition, 2005, 44: 5115-5118.
- [35] LIU Bin, AYDIL E S. Growth of oriented single-crystalline rutile TiO₂ nanorods on transparent conducting substrates for dye-sensitized solar cells[J]. Journal of the American Chemical Society, 2009, 131: 3985–3990.
- [36] WANG Hua, BAI Yu-song, WU Qing, ZHOU Wei, ZHANG Hao, LI Jing-hong, GUO Lin. Rutile TiO₂ nano-branched arrays on FTO for dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2011, 13: 7008–7013.
- [37] LI Yue, FANG Xiao-sheng, KOSHIZAKI N, SASAKI T, LI Liang, GAO Shu-yan, SHIMIZU Y, BANDO Y, GOLBERG D. Periodic TiO₂ nanorod arrays with hexagonal nonclose-packed arrangements: excellent field emitters by parameter optimization[J]. Advanced Functional Materials, 2009, 19: 2467–2473.
- [38] PENG Xin-sheng, CHEN Ai-ping. Aligned TiO₂ nanorod arrays synthesized by oxidizing titanium with acetone[J]. Journal of Materials Chemistry, 2004, 14: 2542–2548.
- [39] WOLCOTT A, SMITH W A, KUYKENDALL T R, ZHAO Yi-ping, ZHANG J Z. Photoelectrochemical water splitting using dense and aligned TiO₂ nanorod arrays[J]. Small, 2009, 5(1): 104–111.
- [40] ZENG Qing-hui, WU Liang-zhuan, ZHANG Yang, QI Bin, ZHI Jin-fang. Low-temperature and normal-pressure growth of oriented rutile TiO₂ nanorod arrays on F-doped tin oxide substrate[J]. Scripta Materialia, 2010, 62: 810–813.
- [41] KASUGA T, HIRAMATSU M, HOSON A, SEKINO T, NIIHARA K. Formation of titanium oxide nanotube[J]. Langmuir, 1998, 14: 3160–3163.
- [42] BAVYKIN D V, PARMON V N, LAPKIN A A, WALSH F C. The effect of hydrothermal conditions on the mesoporous structure of TiO₂ nanotubes[J]. Journal of Materials Chemistry, 2004, 14: 3370–3377.
- [43] MICHAILOWSKI A, ALMAWLAWI D, CHENG Guo-sheng, MOSKOVITS M. Highly regular anatase nanotubule arrays fabricated in porous anodic templates[J]. Chemical Physics Letters, 2001, 349: 1–5.
- [44] 李晓红,张校刚,力虎林.TiO₂纳米管的模板法制备及表征[J]. 高等学校化学学报,2001,22(1):130-132.
 LI Xiao-Hong, ZHANG Xiao-Gang, LI Hu-Lin. Template synthesis and characterization of TiO₂ nanotubules[J]. Chemical Journal of Chinese Universities, 2001, 22(1): 130-132.
- [45] CHAROENSIRITHAVORN P, OGOMI Y, SAGAWA T, HAYASE S, YOSHIKAWA S. A facile route to TiO₂ nanotube

arrays for dye-sensitized solar cells[J]. Journal of Crystal Growth, 2009, 311: 757-759.

- [46] GONG Da-wei, GRIMES C A, VARGHESE O K, HU Wen-chong, SINGH R S, CHEN Zhi, DICKEY E. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001, 16(12): 3331–3334.
- [47] MACAK J M, TSUCHIYA H, TAVEIRA L, ALDABERGEROVA S, SCHMUKI P. Smooth anodic TiO₂ nanotubes[J]. Angewandte Chemie: International Edition, 2005, 44: 7463–7465.
- [48] ZHU Kai, VINZANT T B, NEALE N R, FRANK A J. Removing structural disorder from oriented TiO₂ nanotube arrays: Reducing the dimensionality of transport and recombination in dye-ensitized solar cells[J]. Nano Letters, 2007, 7(12): 3739–3746.
- [49] WANG Dao-ai, YU Bo, WANG Cheng-wei, ZHOU Feng, LIU Wei-min. A novel protocol toward perfect alignment of anodized TiO₂ nanotubes[J]. Advanced Materials, 2009, 21: 1964–1967.
- [50] HU Xiao-ye, ZHANG Tian-ci, JIN Zhen, HUANG Su-zhen, FANG Ming, WU Yu-cheng, ZHANG Li-de. Single-crystalline anatase TiO₂ dous assembled micro-sphere and their photocatalytic activity[J]. Crystal Growth & Design, 2009, 9(5): 2324–2328.
- [51] HU Xiao-ye, ZHANG Tian-ci, JIN Zhen, ZHANG Jun-xi, XU Wei, YAN Jian, ZHANG Jin-ping, ZHANG Li-de, WU Yu-cheng. Fabrication of carbon-modified TiO₂ nanotube arrays and their photocatalytic activity[J]. Materials Letters, 2008, 62: 4579–4581.
- [52] WANG Yan, WU Yu-cheng, QIN Yong-qiang, XU Gao-bin, HU Xiao-ye, CUI Jie-wu, ZHENG Hong-mei, HONG Yu, ZHANG Xin-yi. Rapid anodic oxidation of highly ordered TiO₂ nanotube arrays[J]. Journal of Alloys and Compounds, 2011, 509: L157–L160.
- [53] WANG Yan, WU Yu-cheng, XU Gao-bin, QIN Yong-qiang, ZHENG Hong-mei, CUI Jie-wu, HONG Yu, LIU Liang, SHU Xia, ZHENG Yu-chun, HUANG Xin-min. A facile route to accelerate the formation of TiO₂ nanotube arrays[J]. Journal of Physics: Conference Series, 2011, 276: 012047–6.
- [54] PAN Rong-jun, WU Yu-cheng, LIEW Kong-yong. Investigation of growth mechanism of nano-scaled cadmium sulfide within titanium dioxide nanotubes via solution deposition method[J]. Applied Surface Science, 2010, 256: 6564–6568.
- [55] HAGFELDT A, BOSCHLOO G, SUN Li-cheng, KLOO L, PETTERSSON H. Dye-sensitized solar cells[J]. Chemical Reviews, 2010, 110: 6595–6663.
- [56] MOR G K, SHANKAR K, PAULOSE M, VARGHESE O K, GRIMES C A. Use of highly-ordered TiO₂ nanotube arrays in dye-sensitized solar cells[J]. Nano Letters, 2006, 6(2): 215–218.
- [57] VARGHESE O K, PAULOSE M, GRIMES C A. Long vertically aligned titania nanotubes on transparent conducting oxide for

highly efficient solar cells[J]. Nature Nanotechnology, 2009, 4(9): 592–597.

- [58] YANG Wei-guang, WAN Fa-rong, WANG Ya-li, JIANG Chun-hua. Achievement of 6.03% conversion efficiency of dye-sensitized solar cells with single-crystalline rutile TiO₂ nanorod photoanode[J]. Applied Physics Letters, 2009, 95: 133121–3.
- [59] JOSHI P, ZHANG Li-feng, DAVOUX D, ZHU Zheng-tao, GALIPEAU D, FONG H, QIAO Qi-quan. Composite of TiO₂ nanofibers and nanoparticles for dye-sensitized solar cells with signifiantly improved effiiency[J]. Energy & Environmental Science, 2010, 3: 1507–1510.
- [60] LI Lu-lin, CHEN Yi-ju, WU Hui-ping, WANG N S, DIAU E, Wei-guang. Detachment and transfer of ordered TiO₂ nanotube arrays for front-illuminated dye-sensitized solar cells[J]. Energy & Environmental Science, 2011(4): 3420–3425.
- [61] 陶海军,秦 亮,王 玲,陶 杰. TiO₂ 纳米管阵列的制备、 热处理及光催化性能[J].中国有色金属学报,2007,17(5): 693-698.
 TAO Hai-jun, QIN Liang, WANG Ling, TAO Jie. Fabrication, anneal and photocatalysis applications of self-organized TiO₂ nanotubes[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(5): 693-698.
- [62] 李海龙,罗武林,陈 涛,田文宇,孙 茂,黎 春,朱 地, 刘冉冉,赵宇亮,刘春立.在 Ag 二氧化钛纳米管的制备及其 光催化性能[J].物理化学学报,2008,24(8):1383-1386.
 LI Hai-long, LUO Wu-lin, CHEN Tao, TIAN Wen-yu, SUN Mao, LI Chun, ZHU Di, LIU Ran-ran, ZHAO Yu-liang, LIU Chun-li. Preparation and photocatalytic performance of titania nanotubes loaded with Ag nanoparticles[J]. Acta Phys-Chim Sin, 2008, 24(8): 1383-1386.
- [63] 温艳媛, 丁旵明. Ag@AgCl 修饰的锐钛矿相 TiO₂ 纳米管的制备及其光催化性能[J]. 催化学报, 2011, 32(1): 36-45.
 WEN Yan-yuan, DING Han-ming. Preparation and photocatalytic activity of Ag@AgCl modified anatase TiO₂ nanotubes[J]. Chinese Journal of Catalysis, 2011, 32(1): 36-45.
- [64] MOR G K, SHANKAR K, PAULOSE M, VARGHESE O K, GRIMES C A. Enhanced photocleavage of water using titania nanotube arrays[J]. Nano Letters, 2005, 5(1): 191–195.
- [65] PARK J H, KIM S, BARD A J. Novel carbon-doped TiO₂ nanotube arrays with high aspect ratios for efficient solar water splitting[J]. Nano Letters, 2006, 6(1): 24–28.
- [66] ZHANG Jian-ling, ZHANG Xing-wang, LEI Le-cheng. Modification of TiO₂ nanotubes arrays by CdS and their photoelectrocatalytic hydrogen generation properties[J]. Chinese Science Bulletin, 2008, 53(12): 1929–1932.
- [67] SUN Yan, YAN Kang-ping, WANG Gui-xin, GUO Wei, MA Ting-li. Effect of annealing temperature on the hydrogen production of TiO₂ nanotube arrays in a two-compartment photoelectrochemical cell[J]. The Journal of Physical Chemistry

C, 2011, 115(26): 12844-12849.

- [68] YANG Li-xia, LUO Sheng-lian, CAI Qing-yun, YAO Shou-zhuo. A review on TiO₂ nanotube arrays: Fabrication, properties, and sensing applications[J]. Chinese Science Bulletin, 2010, 55(4/5): 331–338.
- [69] VARGHESE O K, GONG Da-wei, PAULOSE M, ONG K G, DICKEY E C, GRIMES C A. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure[J]. Advanced Materials, 2003, 15(7/8): 624–627.
- [70] VARGHESE O K, GONG Da-wei, PAULOSE M, ONG K G, GRIMES C A. Hydrogen sensing using titania nanotubes[J]. Sensors and Actuators B, 2003, 93: 338–344.
- [71] PAULOSE M, VARGHESE O K, MOR G K, GRIMES C A, ONG K. G. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes[J]. Nanotechnology, 2006, 17: 398–402.
- [72] LU Hao-feng, LI Feng, LIU Gang, CHEN Zhi-gang, WANG Da-wei, FANG Hai-tao, LU Gao-qing, JIANG Zhou-hua, CHENG Hui-ming. Amorphous TiO₂ nanotube arrays for low-temperature oxygen sensors[J]. Nanotechnology, 2008, 19: 405504.
- [73] ALVES D C B, GONCALVES A M B, CAMPOS L C, AVILA E S, LACERDA R G, FERLAUTO A. Hydrogen sensing in titanate nanotubes associated with modulation in protonic conduction[J]. Nanotechnology, 2011, 22: 235501.
- [74] WANG Q, PAN Y Z, HUANG S S, REN S T, LI P, LI J J. Resistive and capacitive response of nitrogen-doped TiO₂ nanotubes film humidity sensor[J]. Nanotechnology, 2011, 22: 025501.
- [75] BAO Shu-juan, LI Chang-ming, ZANG Jian-feng, CUI Xiao-qiang, QIAO Yan, GUO Jun. New nanostructured TiO₂ for direct electrochemistry and glucose sensor applications[J]. Advanced Functional Materials, 2008, 18: 591–599.
- [76] WANG Rong-hui, RUAN Chuan-min, KANAYEVA D, LASSITER K, LI Yan-bin. TiO₂ Nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of *Listeria Monocytogenes*[J]. Nano Letters, 2008, 8(9): 2625–2631.
- [77] SONG Yan-yan, STEIN F S, BERGER S, SCHMUKI P. TiO₂ nano test tubes as a self-cleaning platform for high-sensitivity immunoassays[J]. Small, 2010, 6(11): 1180–1184.
- [78] CAO Chun-lan, HU Chen-guo, WANG Xue, WANG Shu-xia, TIAN Yong-shu, ZHANG Hu-lin. UV sensor based on TiO₂ nanorod arrays on FTO thin film[J]. Sensors and Actuators B, 2011, 156: 114–119.
- [79] 聂茶庚, 龚正良, 孙 岚, 左 娟, 赖跃坤, 林昌健. 软化学 法合成 TiO₂(B)纳米带及其储锂性能研究[J]. 电化学, 2004, 10(3): 330-333.
 NIE Cha-geng, GONG Zheng-liang, SUN Lan, ZUO Juan, LAI Yue-kun, LIN Chang-jian. Lithium insertion into TiO₂(B)

nanobelts synthesized by the soft chemical method[J]. Electrochemistry, 2004, 10(3): 330–333.

- [80] DONG Shan-mu, WANG Hai-bo, GU Lin, ZHOU Xin-hong, LIU Zhi-hong, HAN Peng-xian, WANG Ya, CHEN Xiao, CUI Guang-lei, CHEN Li-quan. Rutile TiO₂ nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries[J]. Thin Solid Films, 2011, 519: 5978–5982.
- [81] YANG Yang, KIM D, YANG Min, SCHMUKI P. Vertically aligned mixed V₂O₅-TiO₂ nanotube arrays for supercapacitor applications[J]. Chemical Communications, Advanced Article. DOI: 10.1039/c1cc11811k.
- [82] SALARI M, ABOUTALEBI S H, KONSTANTINOV K, LIU H K. A highly ordered titania nanotube array as a supercapacitor electrode[J]. Physical Chemistry Chemical Physics, 2011, 13: 5038–5041.
- [83] LIN Jia, LIU Kun, CHEN Xian-feng. Synthesis of periodically structured titania nanotube films and their potential for photonic applications[J]. Small, 2011, 7(13): 1784–1789.
- [84] CAPUTO G, NOBILE C, KIPP T, BLASE L, GRILLO V, CARLINO E, MANNA L, CINGOLANI R, COZZOLI P D,

ATHANASSIOU A. Reversible wettability changes in colloidal TiO_2 nanorod thin-film coatings under selective UV laser irradiation[J]. The Journal of Physical Chemistry C, 2008, 112: 701–714.

- [85] 张宏晔, 嵇天浩, 李玲龙, 齐兴义, 刘奕帆, 蔡建旺, 杜海燕, 孙家跃. 室温铁磁性 Ni²⁺掺杂 TiO₂ 纳米带的制备与表征[J]. 物理化学学报, 2008, 24(4): 607-611.
 ZHANG Hong-ye, JI Tian-hao, LI Ling-long, QI Xing-yi, LIU Yi-fan, CAI Jian-wang, DU Hai-yan, SUN Jia-yue. Preparation and characterization of room-temperature ferromagnetic Ni-doped TiO₂ nanobelts[J]. Acta Phys-Chim Sin, 2008, 24(4): 607-611.
- [86] 李洪义,王金淑,冉 津,周美玲.热处理温度对TiO2纳米管 阵列薄膜光生阴极保护性能的影响[J].中国有色金属学报, 2009,19(6):1119-1123.

LI Hong-yi, WANG Jin-shu, RAN Jin, ZHOU Mei-ling. Effect of annealing temperature on photo-induced cathodic protection of aligned TiO₂ nanotube thin films[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(6): 1119–1123.

(编辑 龙怀中)

吴玉程教授简介

吴玉程,1962年出生,合肥工业大学副校长,材料学教授,博士生导师,德国斯图加特大学高级访问学者,研究方向为:纳米结构与器件;功能(复合)材料;有色金属材料与加工。担任中国仪表材料学会常务理事,中国 微米纳米技术学会理事,中国机械工程学会材料分会理事,安徽省材料与热处理学会理事长等;《中国有色金属 学报》、《机械工程材料》等编委,先后承担国家自然科学基金"纳米制造的基础研究"重大研究计划项目、国家自然科学基金面上项目、国家留学回国人员科研启动基金、教育部博士点基金、安徽省重大科技攻关项目等 20 多项。发表论文 100 多篇,其中 SCI/Ei 收录 80 多篇,著有《无机纳米材料的表面修饰改性与物性研究》等 4 部专著,获授权发明专利 6 项。