文章编号: 1004-0609(2011)08-1974-06

金修饰纳米多孔 Pd 催化剂对甲酸氧化的电催化活性

牛凤娟1,易清风1,刘云清2

湖南科技大学 化学化工学院,湘潭 411201;
 中南大学 化学化工学院,长沙 410083)

摘 要:以水热法制备出纳米多孔网状钯催化剂(nanoPd),采用电位扫描在其上沉积金,制成金修饰纳米钯电极 (Au/nanoPd),运用循环伏安法(CV)、线性扫描(LSV)和交流阻抗谱(EIS)比较 nanoPd 和 Au/nanoPd 电极对甲酸氧 化反应的电催化活性。CV 和 LSV 结果表明:金在 nanoPd 表面的沉积促进钯对甲酸氧化的电催化活性,起始电 位提前,电流密度更高。EIS 研究结果也表明:在 Au/nanoPd 电极上,甲酸氧化反应的电荷传递电阻更低。结果 表明:金修饰纳米钯电极(Au/nanoPd)对甲酸氧化具有较高的电催化活性。

中图分类号: O646 文献标志码: A

Electrocatalytic activity of Au modified nanoporous palladium electrode for formic acid oxidation

NIU Feng-juan¹, YI Qing-feng¹, LIU Yun-qing²

(1. School of Chemistry and Chemical Engineering, Hunan University of Science and Technology,

Xiangtan 411201, China;

2. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China)

Abstract: A novel nanoporous network palladium electrode (nanoPd) was successfully prepared by a hydrothermal method, then a gold-modified nanoparticle palladium electrode (Au/nanoPd) was subsequently fabricated through electrodepositing gold on the nanoPd electrode using a potential scan process. The electrocatalytic activities of the nanoPd and Au/nanoPd towards formic acid in alkaline solution were evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). CV results reveal that Au/nanoPd present a low onset potential and high anodic peak densities, which shows that the deposited gold on nanoPd electrode can enhance the palladium catalyst for formic acid electrooxidation activity. Also Nyquist plots indicate that the formic acid electrooxidation on the Au/nanoPd exhibits low impedance values. The results show that the prepared Au/nanoPd electrode is an effective electrocatalyst towards formic acid oxidation in alkaline media.

Key words: nanoporous palladium; gold-modified; formic acid oxidation; fuel cell

甲酸具有无毒、不易燃、储运方便等优点,且电 化学活性、能量密度、质子导电率较高,因此,是一 种较好的燃料电池液态燃料。甲酸氧化有直接氧化和 间接氧化两种途径,即^[1-4] $HCOOH \longrightarrow CO_2 + 2H^+ + 2e \tag{1}$

 $HCOOH \longrightarrow CO_{ads} + H_2O \longrightarrow CO_2 + 2H^+ + 2e$ (2)

甲酸在金属铂上的电氧化过程是间接氧化途径,

基金项目:国家自然科学基金资助项目(20876038);湖南省科技发展项目(2009GK3084);湖南省自然科学省市联合基金资助项目(10JJ9003) 收稿日期:2010-08-19;修订日期:2010-11-29

通信作者:易清风,教授,博士;电话: 0731-58290045; E-mail: yqfyy2001@yahoo.com.cn

1975

脱水反应形成 CO 中间体,导致催化剂中毒,而甲酸 在钯催化剂上的氧化过程主要是直接氧化途径,无 CO 中间体,避免了催化剂中毒而失活^[5-8],且呈现出很高 的电催化活性。HA 等^[9]研究发现,纳米钯催化剂在直 接甲酸燃料电池中比钯黑具有更高的效率。ZHANG 等^[10]将 Pd 颗粒沉积附于碳纳米管,研究它对甲酸的 电氧化活性。本文作者采用水热法一步制备出新型纳 米多孔钯催化剂电极(nanoPd),然后以 nanoPd 催化剂 做基底,电位扫描沉积金得到金修饰纳米钯电极 (Au/nanoPd),通过循环伏安法、线性扫描和交流阻抗 谱等研究碱性溶液中 nanoPd和 Au/nanoPd 电极对甲酸 氧化的电催化活性。

1 实验

1.1 试剂与仪器

JSM26380LV 扫描电子显微镜(SEM), AutoLab PGSTAT30/FRA 电化学分析仪, 钛片(纯度 99.2%), 氯化钯, 氢氧化纳, 甲酸均为分析纯, 高纯氮气(纯度 99.99%), 实验所用水均为三次水。

1.2 nanoPd 和 Au/nanoPd 电极制备

钛片置于质量分数为 18%的盐酸中,加热微沸 10 min,然后超声清洗 15 min,冲洗后置于水热反应釜 中,依次加入 10 mL, 5 mmol/L PdCl₂和 1 mL 10%甲 醛(HCHO),然后在红外干燥箱中于 180 ℃下反应 10 h。反应完成后待冷却至室温,取出钛基体,在 100 ℃ 下烘干 0.5 h,制得 nanoPd 电极。

将上述 nanoPd 电极置于 N_2 饱和的 25 mmol/L AuCl₃溶液中,在-0.5~0.5 V 范围内以 50 mV/s 的扫速 进行循环伏安电位扫描,沉积完毕的电极在 N_2 下吹 干,即制得 Au/nanoPd 电极。

1.3 电化学性能测试

电化学测试在三电极玻璃电解槽中进行,工作电极为商用多晶钯电极(polyPd)、nanoPd 和 Au/nanoPd 电极,参比电极为饱和甘汞(SCE),对电极是大面积铂电极。测试前向电解槽内通氮气至少 15 min 以除去溶解氧,测试过程中,始终保持氮气通过液面上方,所有测试均在室温(22±2 ℃)下进行。

polyPd 电极(*d*=1 mm)经 50 nm 的 Al₂O₃ 抛光膏抛 光至镜面亮度,经 3 次水冲洗后超声处理 15 min,之 后在 0.5 mol/L H₂SO₄ 中活化 30 min,冲洗干净于 3 次 水中浸泡备用。

2 结果与讨论

2.1 nanoPd 电极表面形貌

采用扫描电子显微技术(SEM)对 nanoPd 电极表面的颗粒形态进行了表征。图 1(a)所示为 nanoPd 电极的 SEM 像。从图 1(a)可以看出, 钯颗粒在钛基表面紧密 结合。颗粒之间相互牢固地连接在一起形成蜂窝状多 孔结构, 使得电极实际表面积大大增加, 且孔穴的形成为金颗粒的附着提供大量位点, 保障 Au/nanoPd 催 化剂颗粒的高度稳定性。图 1(b)中的能谱分析结果表 明, nanoPd 电极表面有金的沉积。在 2.9 keV 的能量 峰是钯的特征峰, 2.1 keV 和 9.7 keV 的能量峰是金的 特征峰。

2.2 nanoPd 和 Au/nanoPd 电极循环伏安曲线

图 2(a)和(b)所示为 nanoPd 和晶体 Pd(polyPd)电极 在 1.0 mol/L NaOH 溶液中的循环伏安图。图 2(a)中 A₁、C₁峰对应于插入图 2(b)中 a₁、c₁峰,是氢的吸附 和脱附。A₂、C₂峰对应于 a₂、c₂峰,是钯氧化物的形 成和特征还原峰。从图 2(a)和(b)中可以看出, nanoPd 电极上氢的吸附脱附峰明显正移, 且钯的特征还原峰 电流密度远远大于 polyPd 电极, 二者分别为 58.26 mA/cm²和 1.53 mA/cm²。图 2(c)所示为 nanoPd 电极在 AuCl₃溶液中扫描 1 圈、2 圈和 3 圈的循环伏安曲线。 与 nanoPd 电极的 CV 图相比较, Au/nanoPd 曲线在 0.07V 处出现了新的还原峰, 该峰随循环次数的增加 而增大, 这是金的特征还原峰^[11-12], 金氧化物的形成

图 2 nanoPd、polyPd 和 Au/nanoPd(2(b))电极在 1.0 mol/L NaOH 溶液中的循环伏安曲线

Fig.2 CV of nanoPd (a), polyPd (b) and Au/nanoPd (c) electrodes in 1.0 mol/L NaOH solution at scan rate of 50 mV/s

电位与钯氧化物的形成相似,所以在正向扫描过程中 没有出现新的峰。在-0.23 V 附近的还原峰电流随着扫 描次数的增加,电流减小,这是由于随着金颗粒的沉 积,裸露的钯逐渐减少,还原峰由原来的-0.38 V 正移 到-0.23 V,原来的钯氧化物的形成和还原峰均降低, 这也说明发生金的电沉积。

图 3 所示为 nanoPd 和 polyPd 电极在 1.0 mol/L NaOH+0.5 mol/L HCOOH 溶液中的循环伏安图。与 polyPd 电极相比,甲酸在 polyPd 电极上的起始氧化电 位为-0.6 V,氧化峰电流密度为 7.5 mA/cm²,而在 nanoPd 电极上的起始氧化电位负移至-0.81 V,氧化峰 电流密度为 148.6 mA/cm²。结果表明: nanoPd 电极的 起始氧化电位提前 190 mV 左右,氧化峰电流密度增 大约 20 倍。一般认为,甲酸在 Pd 催化剂表面上的电 化学氧化过程表示如下^[13-15]:

 $Pd+HCOOH \rightarrow Pd-COOH_{(ads)}+H^++e$

 $Pd-COOH_{(ads)} \rightarrow CO_2 + H^+ + e$

图 3 nanoPd 和 polyPd 电极在 1.0 mol/L NaOH+0.5 mol/L HCOOH 溶液中的循环伏安曲线

Fig.3 CV of nanoPd (a) and polyPd (b) electrodes in 1.0 mol/L NaOH+0.5 mol/L HCOOH solution at scan rate of 50 mV/s

由此看出,甲酸氧化是一个不经 CO 中间体直接 氧化为 CO₂ 的过程。从图 3 看出, nanoPd 电极正向扫 描氧化峰的峰值 *I*_f(148.84)与逆向扫描氧化峰峰值 *I*_b(181.02)之比 *I*_f/*I*_b 为 0.83, 而 polyPd 电极 *I*_f/*I*_b 为 0.33, 说明 nanoPd 催化剂抗 CO 中毒能力有很大改善^[16]。

采用线性扫描技术进一步研究 nanoPd 和 Au/nanoPd 电极对甲酸氧化的电催化活性(见图 4)。插 入图表示在-0.65 V时,不同电极上甲酸氧化的电流密 度柱形图。从图 4 中观察到, 甲酸在 Au/nanoPd 电极 上的起始氧化电位约为-0.90 V,比 nanoPd 电极 (-0.81 V)提前了 90 mV。在燃料电池的实际应用中, 100 m V 的电位负移将会使电池的输出电压提高 10%~30%。从柱形图中可直观地看出,在-0.65 V时, Au/nanoPd 电极上的电流密度明显大于 nanoPd 电极 的,甲酸在 nanoPd、Au/nanoPd(c1)、Au/nanoPd(c2)和 Au/nanoPd(c3)电极上电流密度分别为 16.47、43.97、 38.33 和 36.36 mA/cm²。Au/nanoPd(c1)氧化峰的电流 略高于 Pd 电极的, 但 Au/nanoPd(c2)和 Au/nanoPd(c3) 的氧化峰电流均低于 nanoPd 电极的, 且峰电位较 nanoPd 电极正移。甲酸在 Au/nanoPd 电极上电氧化活 性的增强可能是由 Au 与 Pd 原子之间的协同双功能作 用引起的[17]。

通过比较发现,Au/nanoPd 电极对甲酸氧化的起始电位比 nanoPd 电极更负且具有较高的电流密度,但只有 Au/nanoPd(c1)电极的氧化峰峰电流密度略高于 nanoPd 电极的,峰电位没有明显正移;Au/nanoPd(c2)和 Au/nanoPd(c3)的电流密度都有所降低且电位正移。由此可见,在 nanoPd 催化剂中沉积少量的 Au 能提高Pd 对甲酸的电催化活性。金沉积的量不同,对甲酸氧化的活性也会有差异,其原因可能是由于,当 Au 含量较低时,合金表面的 Au 可以忽略,此时晶格收缩效应占优,有利于 Pd-COOH_(ads)的减弱,从而增强Pd-Au 电催化甲酸的活性;高含量 Au 合金表面的 Au 增加以致表面配体效应占优,从而增强 Pd-COOH_(ads)作用而不利于甲酸氧化进行^[18]。

2.3 交流阻抗分析

图 5 所示为 nanoPd 和 Au/nanoPd 催化剂上甲酸氧 化的交流阻抗谱(扰动信号为 5 mV)。从图 5 中可以看 出,4个阻抗谱图具有相似的双半圆形态,半圆弧 I 大 小几乎一致,半圆弧 II 直径由大到小依次为 nanoPd、 Au/nanoPd(c3)、Au/nanoPd(c2)和 Au/nanoPd(c1)。半 圆弧 I 的高频端与实轴的交点对应于溶液电阻,半圆

图 4 nanoPd 电极和 Au/nanoPd 电极对甲酸氧化的线性扫描图

Fig.4 LSV curves of nanoPd and Au/nanoPd electrodes towards formic acid oxidation (Insert figure: current density column of formic acid oxidation at -0.65 V)

弧 I 与 II 分别是 OH 的吸附过程和甲酸在电极上的氧 化过程, OH 的吸附过程中溶液组成没有改变(1.0 mol/L NaOH+0.5 mol/L HCOOH),所以 4 个谱图中的 半圆弧 I 直径大小接近。阻抗图中未发现 Warburg 阻 抗^[19],因此,在本实验条件下不存在甲酸的浓差极化。 交流阻抗谱中半圆弧直径的大小反映电化学体系动力 学过程的相对速度快慢,直径越小,电荷传递越容易, 表明该体系动力学过程的相对速度越快。图 5 中半圆 弧 II 可以看作是甲酸的电氧化过程,其中 Au/nanoPd 电极上的甲酸氧化的直径明显小于 nanoPd 的,说明金 的修饰能够提高甲酸在 nanoPd 电极上的电催化氧化 活性,而 Au/nanoPd(c1)电极对甲酸电氧化的催化效果 最为突出,说明少量 Au 的存在可以大大提高 Pd 对甲 酸的电氧化活性,这与循环伏安图分析结果一致。 图 6 所示为等效电路图能够较好地模拟工作电极的交流阻抗谱, 拟合参数见表 1。等效电路图中 *R*₁、*R*₂、 *C*₁和 *Q* 分别代表溶液电阻、电荷传递电阻、等效电容 和常相位角元件,可以很好地模拟 OH 的吸附过程。 从表 1 看出, *R*₁ 值基本保持不变,这与电解液组成没 有改变有关, *R*₂ 值也接近,这是因为溶液中 OH 浓度 没有改变。*R*₃和 *C*₂ 模拟甲酸氧化部分,其中 Au/nanoPd(c1)的电荷传递电阻(*R*₃)最小,接着依次为 Au/nanoPd(c2)、Au/nanoPd(c3)和 nanoPd,这与图 5 相一致。

图 5 nanoPd 和 Au/nanoPd 电极在 1.0 mol/L NaOH+0.5 mol/L HCOOH 溶液中的 Nyquist 曲线以及相应的模拟曲线 Fig.5 Nyquist impedence (dotts) of nanoPd and Au/nanoPd electrode in 1.0 mol/L NaOH+0.5 mol/L HCOOH at potential of -300 mV and corresponding fitting curves (solid lines)

表1 交流阻抗模拟结果

Table 1 Simulation results of impedance sp
--

Electrode	R_1/Ω	$C_1/\mu F$	R_2/Ω	Y_0	п	C_2/mF	R_3/Ω
NanoPd	0.787	160.5	-175.7	0.005 6	0.000 69	1.988	38.90
Au/nanoPd(c1)	1.037	84.5	-176.0	0.005 6	0.000 82	2.078	15.79
Au/nanoPd(c2)	1.265	69.1	-171.6	0.005 7	0.001 17	2.247	19.13
Au/nanoPd(c3)	1.116	132.1	-190.0	0.005 2	0.000 67	2.144	26.30

图6 甲酸氧化的等效电路图

Fig.6 Nyquists equivalent electric circuit compatible shown in Fig.5

3 结论

1) 水热法制备的纳米多孔 Pd 电极(nanoPd)的比 表面积大,活性位点多,对甲酸的电催化氧化活性远 远高于晶体 Pd 电极的,起始电位提前 190 mV 左右。

2) 用电位扫描法在 nanoPd 电极上沉积 Au 得到 Au/nanoPd,发现少量 Au 的存在能提高 Pd 催化剂对 甲酸的电催化氧化活性,电流密度增加,起始电位提 前 90 mV,且电荷传递电阻极低。

REFERENCES

- RICE C, HA S, MASEL R I, WASZCZUK P, WIECKOWSKI A, BARNARD T. Direct formic acid fuel cells[J]. J Power Source, 2002, 111(1): 83–89.
- [2] MARKOVIC N M, GASTERGER H A, PHILIP N R. Electro-oxidation mechanisms of methanol and formic acid Pt-Ru alloy surface[J]. Electrochim Acta, 1995, 40(1): 91–98.
- [3] MROZEK N F, LUO H, WEAVER M J. Formic acid electrooxidation on platinum-group metal: is adsorbed carbon monoxide solely a catalytic poison[J]. Langmuir, 2000, 16(22): 8463–8469.
- [4] CHOI J H, JEONG K J, DONG Y J, HAN J, LIM T H, LEE J S, SUNG Y E. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells[J]. J Power Source, 2006, 163(1): 71–75.
- [5] ARENZ M, STAMENKOVIC V, SCHMIDT T J, WANDEL T K, ROSS P N, MARKOVIC N M. The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces[J]. Phys Chem Chem Phys, 2003, 5: 4242–4251.
- [6] HOSHI N, KIDA K, NAKAMURA M, NAKADA M, OSADA K. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium[J]. J Phys Chem B, 2006, 110(25): 12480–12484.
- [7] ZHANG L L, TANG Y W, BAO J C, LU T H, LI C A. A carbon-support Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell[J]. J Power Sources, 2006, 162(1): 177–179.

- [8] YI Q F, HUANG W, LIU X P, XU G R, ZHOU Z H, CHEN A C. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation[J]. J Electroana Chem, 2008, 619/620(15): 197–205.
- [9] HA S, LARSEN R, MASEL R I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells[J]. J Power Sources, 2005, 144(1): 28–34.
- [10] ZHANG S X, QING M, ZHANG H, TIAN Y. Electrocatalytic oxidation of formic acid on functional MWCNTs supported nanostructured Pd-Au catalyst[J]. Eletrochemi Commun, 2009, 11: 2249–2252.
- [11] YI Q F, YU W Q, NIU F J. Novel nanoporous binary Au-Ru electrocatalysts for glucose oxidation[J]. Electroanalysis, 2010, 22(5): 556–563.
- [12] 于文强,易清风. 钛基纳米多孔金电极对甲醛氧化的电催化 活性[J]. 无机化学学报,2010,26(3):459-463.
 YU Wen-Qiang, YI Qing-Feng. Electrocatalytic oxidation of formaldehyde on anovel titanium-supported nanoporous gold electrode[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(3):459-463.
- [13] ARENZ M, STAMENKOVIC V, SCHMIDT T J, WANDEL T K, ROSS P N, MARKOVIC N M. The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces[J]. Phys Chem Chem Phys, 2003, 5: 4242–4251.
- [14] XU W F, GAO Y, LU T H, TANG Y W, WU B. Kinetic study of formic acid oxidation on highly dispersed carbon supported Pd-TiO₂ electrocatalyst[J]. Catal Lett, 2009, 130: 312–317.
- [15] ZHOU W P, LEWERA A, LARSEN R, MASEL R I, BAGUS P S, WIECKOWSKI A. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid[J]. J Phys Chem, 2006, 110(27): 13393–13398.
- [16] SUN Z P, ZHANG X G, LIU R L, LIANG Y Y, LI H L. A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation[J]. J Power Sources, 2008, 185(2): 801–806.
- [17] 赵杰,黄思玉,陈卫祥. PtRu/C和PtNi/C催化剂合成及其对甲 醇氧化的电催化性能[J]. 浙江大学学报, 2009, 43(5): 962-967.
 ZHAO Jie, HUANG Si-Yu, CHEN Wei-Xiang. Synthesis of RtRu/C and PtNi/C catalysts and their electrocatalytic performance for methanol electrooxidation[J]. Journal of Zhangjiang University: Engineering Science, 2009, 43(5): 962-967.
- [18] SUO Y, ZHANG L, LU J. First-principles consideration in the design of Pd-alloy catalysts for oxygen reduction[J]. Angew Chem Int Ed, 2007, 46: 1–4.
- [19] 曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京:科学出版社, 2002:90.

CAO Chu-nan, ZHANG Jian-qing. An introduction to electrochemical impedance spectroscopy[M]. Beijing: Science Press, 2002: 90.