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Mg15Al 镁合金 ECAP 变形过程中 β 相的 

碎化机理及动态析出行为 
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摘 要：为了改善Mg­Al系合金中 β­Mg17Al12 相的形态、大小和分布，充分发挥其沉淀强化作用，利用能产生强 

塑性变形的等通道转角挤压法挤压Mg15Al高铝镁合金；采用XRD、SEM、EDS和 TEM研究不同道次 ECAP挤 

压后 Mg15Al 高铝镁合金中 β­Mg17Al12 相的演变。结果表明：ECAP 强塑性变形能够有效地碎化 Mg15Al 高铝镁 

合金中粗大的网状共晶 β­Mg17Al12 相；随挤压道次的增加，β­Mg17Al12 相尺寸逐渐减小，挤压 4 道次后，网状共 

晶 β­Mg17Al12 相被破碎成尺寸在 5  μm 以下的小块，分布得到一定改善；由于高应力与高温的共同作用，挤压 2 

道次后，部分 β­Mg17Al12 相发生回溶，挤压 4 道次后，在 α­Mg 基体中动态析出许多尺寸在 200  nm 以下的粒状 
β­Mg17Al12 相。 
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Abstract: In order  to improve  the morphology, size and distribution of β­Mg17Al12  phase in the Mg­Al alloy and fulfill 

the precipitation  strengthening effect of β­Mg17Al12  phase, Mg15Al high­aluminum magnesium alloy was processed by 
equal channel angular pressing. The evolution of β­Mg17Al12 phase in the Mg15Al high­aluminum magnesium alloy after 

equal channel angular pressing (ECAP) for different passes was investigated by XRD, SEM, EDS and TEM. The results 
show that the coarse network eutectic β­Mg17Al12 phase in Mg15Al high aluminum­magnesium alloy can be effectively 

fragmentized by ECAP. With increasing extrusion passes, the size of β­Mg17Al12 decreases. After ECAP for 4 passes, β 
phase  is  fragmentized  into  small  lump­shaped  particles  with  size  of  less  than  5  μm  and  the  distribution  of  β  phase 
becomes more homogeneous. Meanwhile, due to the large shear stress and high temperature, the dissolution of β phase in 
matrix occurs after ECAP for 2 passes and a large number of granular β phase with the size below 200 nm precipitates 
from the matrix after ECAP for 4 passes. 
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等通道转角挤压技术是近年来发展的一种制备块 

体超细晶、甚至纳米晶材料的新工艺。此工艺在挤压 

过程中不改变试样的尺寸，容易实现深度塑性变形， 

从而获得超细晶粒或纳米晶粒，同时可使合金强塑性 

提高 [1] 。因此，等通道转角挤压技术具有极大的工业 

应用潜力。目前，人们已成功地利用 ECAP法制备了 

铝合金 [2] 、铜合金 [3] 、钛合金 [4] 、低碳钢 [5] 和镁合金 [6−7] 

的块体超细晶材料，并对其进行了大量的研究。但这 

些研究主要集中在如何利用强变形使合金晶粒细化至 

纳米级，以大幅度提高合金的力学性能。与此相应的 

微观研究也主要集中在强变形工艺方法及其对合金基 

体晶粒细化、位错亚结构研究。然而，ECAP过程中， 

第二相的碎化机理尚未得到深入研究。王素梅等 [8] 研 

究了 ECAP 挤压对 2A12 铝合金的影响，指出组织中 

的  Al2Cu 化合物在剪切力的作用下由针状变成颗粒 

状，这是由于变形过程中大量的位错将第二相粒子切 

断所致。HORITA等 [9] 研究了 ECAP后 Al­Mg­Si合金 

第二相的变化，发现棒状Mg2Si由于 ECAP多道次的 

剪切变形形成形状圆滑的块状，并有部分发生溶解。 

彭北山等 [10] 研究了 Al­Cu二元合金的 θ′相在 ECAP挤 

压作用下的破碎行为，认为 θ′相在亚晶界面、扭转带 

及剪切带界面的溶解导致其破碎和球化。以上研究表 

明， ECAP对铝合金中的第二相碎化作用的研究较多， 

而对镁合金中第二相的碎化机理尚未见报道。Mg­Al 
合金中的  β­Mg17Al12 相对其有很好的强化作用，但 
β­Mg17Al12 相一般在 Mg­Al 合金凝固末期形成，易聚 

集在晶界连成网状，对合金力学性能有极大损坏 [11] 。 

因此，研究 β­Mg17Al12 相碎化及其碎化机理非常有意 

义。本文作者选择  β­Mg17Al12 相含量较多的  Mg15Al 
合金为研究对象，对其进行 ECAP挤压，考察挤压过 

程中第二相的变化，分析其碎化机理及析出行为。 

1  实验 

实验用 99.8%纯镁和 99.9%纯铝配制 Mg15Al 二 

元合金。镁合金熔炼试验在 SXZ−5−2电阻炉中进行， 

使用涂刷 ZnO涂料的不锈钢坩锅， 一次装炉量 400 g， 

熔炼时先加入镁锭，用  RJ−2 熔剂保护，熔炼温度为 
973  K。镁锭熔化后添加 15%纯 Al，待其熔清后搅拌 
2 min，静置 10 min，最后浇入 d 20 mm×150 mm的 

圆柱形金属模中。 在距金属模试样底部 25 mm处截取 

铸态检测试样后，将其余棒料线切割加工成  10 
mm×10 mm×50 mm试样，利用WDW−100KN型电 

子万能试验机在 553 K、挤压速率为 2.4 mm/min，以 

BC 方式进行等通道挤压 1、2和 4次(每次挤压前，试 

样按相同的方向旋转 90°， 再进行下一道次的挤压 [12] )， 

挤压前或两次挤压间，试样要在电阻加热炉中保温 
15  min，以便使试样与模具温度保持一致。挤压使用 

带有起偏角的模具 [13] ，模具参数为  Ψ=20º、Φ=90º， 

模具起偏角可起到相当于增加背压力的作用，降低试 

样开裂倾向。润滑剂为石墨。挤压后在试样中部沿平 

行于挤压方向的侧面取样， 如图 1所示。 采用KY2 2000 
型X射线衍射仪(XRD)对Mg15Al合金进行物相分析， 

利用 JSM−6700F扫描电镜和 JEM−2010透射电镜进行 

组织观测。 

图 1  挤压态合金取样及组织观察方向示意图 
Fig.1  Schematic  diagram  showing  sampling  and  observing 
direction  of  ECAP  sample:  (a)  Sampling  position  and 
microstructure observing direction; (b) Die for ECAP 

2  结果与分析 

2.1  铸态Mg15Al镁合金的物相分析及 β相的形貌 

利用 SEM、EDS 和 XRD 对铸态 Mg15Al 合金进 

行分析， 其结果如图2所示。 图2(a)所示为铸态Mg15Al 
镁合金的 SEM像，图 2(b)和(c)所示为对应于图 2(a)不 

同组织的 EDS谱分析结果，图 2(d)所示为与图 2(a)对 

应试样的 XRD谱。由图 2(a)可见，铸态Mg15Al合金 

由深灰色的基体相和亮灰色，并连成网状的第二相组 

成。根据图  2(b)和(c)可知，深灰色的基体相是  α­Mg 
固溶体，其中 Al 的固溶量为 9.85%(质量分数)。亮灰 

色的相也是由Mg和 Al两种元素组成，但是Mg与Al 
的摩尔比为 51.21:39.94(约为 1.28)， 接近于 β­Mg17Al12 
相。 这与 XRD检测一致(见图 2(d))。 因此， 结合Mg­Al 
二元相图 [11] ， 铸态Mg15Al镁合金是由含 Al量较高的 
α­Mg固溶体和网状共晶 β­Mg17Al12 相组成。
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图 2  铸态Mg15Al合金的 SEM像、EDS和 XRD谱 

Fig.2  SEM image(a), EDS spectra((b), (c)) and XRD pattern(d) of as­cast Mg15Al magnesium alloy 

2.2  ECAP变形过程中共晶 β相的形貌与分布变化 

图  3 所示为通过不同道次等通道挤压后 Mg15Al 
镁合金的 SEM及 TEM像，图 3清楚地显示了变形过 

程中 β­Mg17Al12 相的变化。由图 3(a)可见，经过 1 道 

次 ECAP 挤压，粗大网状 β­Mg17Al12 相沿着挤压方向 

伸长，部分网仍然连着，但已经严重变形，部分网已 

被挤碎且分离开来；经 2道次挤压后，β相基本断网， 

形成不规则的块状，部分小块已经弥散开，部分仍然 

聚集在一起，如图 3(b)所示；经 4 道次挤压后，块状 
β相继续破碎， 形成 5 μm以下的形状不规则的小块(见 

图 3(c)右上角小图)，弥散度增加，但仍有部分小颗粒 

聚集在一起，没有完全弥散开，见图  3(c)，而且通过 

高倍 TEM观察发现， 初晶 α­Mg基体中还析出许多尺 

寸小于 200 nm且均匀细小的粒状 β相， 如图 3(d)所示。 

图 4所示为挤压不同道次的Mg15Al合金的XRD 
谱，对比图 1(d)可知，等通道挤压后，合金的相组成 

没有发生变化，依然由 α­Mg和 β­Mg17Al12 相组成。但 

对比图 4(a)、(b)和(c)可知，经不同道次挤压后，α­Mg 
衍射峰强度变化不大，而 β­Mg17Al12 相衍射峰强度则 

明显不同。挤压 1 道次后，与铸态时 β­Mg17Al12 相衍 

射峰强度相比基本不变；挤压  2 道次后，β­Mg17Al12 
相衍射峰强度急剧下降；挤压  4 道次后，β­Mg17Al12 
相衍射峰强度大幅升高，超过了铸态时 β­Mg17Al12 相 

衍射峰强度。由此可见，在等通道挤压过程中，挤压 
2道次后，β­Mg17Al12 相发生了回溶，数量明显下降， 

挤压 4 道次后，可能析出了大量的 β­Mg17Al12 相，使 

其数量急剧增加，这与图 3的组织观察结果一致。 

图5所示为挤压1道次后β相的高倍SEM和TEM 
像。由图 5(a)可见，挤压 1 道次后，铸态组织网状共 

晶 β 相明显断开，在共晶 β 相较薄的部位出现许多缩 

颈与沟槽，这是溶解和弯折现象(见图  5(a)中白色箭 

头)，有些部位出现因应力而拉断现象，两半 β相边部 

较粗糙，类似断口，有些部位有明显剪断现象，β 相 

断边非常平整(见图  5(a)中黑色箭头)。图  5(b)所示的 
TEM照片中白色箭头所指部位也清楚地显示了共晶 β 
相在大变形作用下出现弯折， 弯折处聚集了大量位错， 
β相在此处出现缩颈。 

2.3  共晶 β相的碎化机制 

在挤压过程中，第二相颗粒断裂的机制主要有如
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图 3  ECAP挤压不同道次后Mg15Al合金的 SEM和 TEM像 

Fig.3  SEM and TEM images of ECAP Mg15Al alloys after different passes: (a) 1 pass; (b) 2 passes; (c), (d) 4 passes 

图  4  ECAP 挤压不同道次  Mg15Al 

合金的 XRD谱 

Fig.4  XRD  patterns  of  ECAP 

Mg15Al  alloys  after  different  passes: 

(a) 1 pass; (b) 2 passes; (c) 4 passes



中国有色金属学报  2011 年 8 月 1798 

图 5  ECAP挤压 1道次后 β相的 SEM和 TEM像 

Fig.5  SEM and TEM images of β­Mg17Al12 after ECAP 1pass: 

(a) SEM image of β phase; (b) Pile­up of dislocation at β phase 

and bend of β phase 

下 4种 [14] ：1) 弯曲折断机制。对于弯曲状或树枝状颗 

粒，如共晶粒子，一个大角度弯曲很容易在瞬间发生 

并使颗粒发生断裂；2)  短纤维加载机制。对于长条 

状颗粒，由于高的拉应力的转移与颗粒纵横比成一定 

比例，此时的应力将使它发生断裂；3) 剪切机制。对 

于等轴晶粒，当它通过挤压模壁区域时，若受到的剪 

切应力足够大时将发生断裂；4) 溶解、扩散和熔断机 

制。轴承钢中网状碳化物一般依据这种机制破碎。 
Mg15Al 合金中的  β­Mg17Al12 相具有体心立方点 

阵，一个单胞内含有 58个原子(34个Mg原子，24个 
Al 原子)，结构较复杂，点阵平移周期较长，通常难 

以变形，室温下表现为脆性相。但 β 相熔点只有 710 
K(437 ℃)，高温热稳定性较低，从室温加热到 473 K 
时，β相的硬度减小 50%~60% [15] ，高温等通道挤压时 

表现出很好的流变性能 [16] 。 因此， 在 553 K进行 ECAP 
挤压时，试样放入垂直通道保温  15  min 后开始挤压 

时，β 相已开始软化，具有少量塑性特性，在上方压 

力的排挤下， β相与 α­Mg基体在三向应力作用下向下 

运动，当通过通道转角时，大的剪切应力使 β相发生 

弯折，α­Mg基体内产生大量位错，位错在 β相弯折处 

发生塞积(见图 5(b))。 此处 β/α界面处的原子处于非常 

混乱的高能状态，而强变形引入的高密度位错成为天 

然的原子扩散管道，加速了 Al原子的扩散，最终使得 
β 相在位错聚集较多的  β/α 界面处首先发生溶解形成 

缩颈；随挤压道次增加，变形加大，位错继续增加， 

使得 β相在这些界面缺陷处溶解加快， 形成更多缩颈， 

缩颈更细，这些缩颈处强度很低，在大应力的作用下 

拉断或切断，使 β 相破碎成小块。因此，根据 β 相的 

碎化机制可以认为，这是由 β 相在位错聚集的 β/α 界 

面处的溶解和大变形力剪切共同作用导致的。 

2.4  ECAP变形过程中 β相的动态析出 

由图 3和 4可知，当 ECAP挤压 1和 2道次后， 

初晶 α­Mg内基本没有析出 β­Mg17Al12 相， 而且挤压 2 
道次后，β­Mg17Al12 相由于发生回溶，数量急剧减少； 

而挤压 4 道次后，在初晶 α­Mg 基体中析出了许多细 

小的 β­Mg17Al12 相，使其衍射峰强度急剧增加。但这 

些 β­Mg17Al12 相没有像在传统热处理中由于沉淀相与 

基体之间存在惯习面而呈片层状，而是呈现出粒状特 

征。这与 β­Mg17Al12 相的脱溶析出条件有关。根据第 

二相脱溶热力学公式 [17] ： 

) ln ln (  B B B B B 
1 1 1 α α α α α α β α χ  a RT G a RT G G − − + = ∆ Θ Θ + → 

(1) 

式中：B为溶质元素；α 为母相；  1 α 为脱溶后的基体 

相； β 为第二相；  1 α β α + → ∆G  为第二相脱溶驱动力； α χ B 
为 B 在 α 基体中的初始固溶量；  1 

B 
α G Θ 为元素 B在 α1 

中的偏摩尔自由能； α 
B G Θ 为  B 在α 中的偏摩尔自由 

能；  1 
B 
α a  为 B在  1 α 中的活度； α B a  为 B在 α中的活度。 

可见 β­Mg17Al12 相的脱溶驱动力与Al在 α­Mg中的固 

溶度和温度成正比，Al  的固溶度越高，温度越高， 
β­Mg17Al12 相的脱溶驱动力越大， β­Mg17Al12 相越易析 

出。而且根据文献[18]可知，第二相析出还与保温时 

间的长短有关，保温达到一定时间后，才可以析出第 

二相，且随着时间的延长，析出相数量增加。黎文 

献 [19] 研究认为，Mg­Al合金时效脱溶时，不像典型的 
Al­Cu合金，不经过 GP区和过渡相，而是在晶界、亚 

晶界、位错线、夹杂物及其他晶体缺陷可提供高形核 

能量的地区直接脱溶析出。对于挤压合金  Mg15Al， 

根据 Mg­Al 二元相图 [11] ，15%的 Al 含量已经超过了 
Al在  Mg中的最大固溶度 12.7%。而合金采用金属型 

铸造，原始组织中成分偏析较大，基体 α­Mg中 Al的 

固溶量为 9.85%(见图 2(b))； 而在 553 K的 ECAP挤压 

温度下，Al在Mg中的固溶度仅为 5.5%，那么合金在
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553 K挤压过程中，β­Mg17Al12 相必将脱溶析出。 

挤压 1、2道次时，由于保温与挤压时间较短，且 

初晶  α­Mg 晶内的缺陷较少，可提供形核的高能量区 

较少，故 β相基本不析出。且由于挤压温度较高，部 

分 β相发生回溶，使 α­Mg中固溶的 Al进一步增加， 

增加了 β­Mg17Al12 相的脱溶驱动力；挤压 4 道次时， 

一方面，由于前 3道次发生了大塑性变形，使基体中 
α­Mg晶内位错密度急剧增加， 并形成缠结之后重排形 

成了许多亚晶界，晶粒明显细化，晶界大幅增加，这 

些晶界、亚晶界及位错线为 β 相形核提供了丰富的形 

核位置；另一方面， 细小的晶粒使 Al原子的扩散距离 

缩短， 高密度位错和空位等缺陷又为 Al原子的快速扩 

散提供了可能，促进了 β 相的析出，故 4 道次挤压后 

析出大量 β相，使其衍射峰强度急剧增加(见图 4(c))。 

这实质上就是高温高应力下，合金发生了时效，β 相 

在基体中的连续沉淀析出。析出的 β 相形态呈粒状， 

而不是片层状，这是由于一方面在 ECAP强塑性变形 

过程中，α­Mg晶内将产生高密度位错，且 α­Mg基体 

晶格形成强烈的无序化，这能够阻碍基体与沉淀相之 

间的形成惯习面 [20−21] ；另一方，面 ECAP每道次变形 

时间只有 20 min，时间较短，β相析出后来不及长大， 

因此此时脱溶析出了大量的细小粒状 β相。 

3  结论 

1)  ECAP强塑性变形对 Mg15Al合金中网状共晶 
β­Mg17Al12 相有强烈的碎化作用，且随着挤压道次的 

增加，碎化作用加强，挤压  4 道次后，β­Mg17Al12 相 

被破碎成 5  μm 以下的小块，但没有完全弥散开，仍 

有部分聚集在一起。 
2)  β­Mg17Al12 相在 ECAP强塑性变形作用下出现 

弯折，弯折处易聚集大量位错，β­Mg17Al12 相在位错 

聚集的 β/α 界面处发生溶解，产生缩颈，在大应力的 

作用下拉断或切断，导致 β­Mg17Al12 相的破碎。 
3) 在 ECAP强塑性变形过程中，Mg15Al 镁合金 

将在高应力和高温共同作用下沉淀析出较多的纳米级 

粒状 β­Mg17Al12 相。 
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