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NH4F 溶液化学处理对 γ­TiAl抗高温氧化性能的影响 
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摘 要：采用 NH4F溶液对 γ­TiAl合金进行表面氟化处理，以提高 TiAl合金的抗高温氧化性能。分别研究经过氟 

化处理和未处理试样在 850和 900 ℃时的高温氧化行为及 NH4F溶液浓度对合金氧化层组织结构的影响。结果表 

明，经过 NH4F溶液处理 TiAl合金高温氧化层的组织比未处理合金更加致密，高温氧化抗力高于未处理合金的。 
850 ℃氧化时，TiAl合金氧化抗力随 NH4F溶液浓度的增高而增加；900 ℃氧化时，TiAl合金氧化后的质量增量 

不随 NH4F溶液浓度增加而改变。 
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Abstract：The  surface  of  γ­TiAl  alloy was  treated  by  dipping  into  NH4F  solution  to  improve  the  high  temperature 

oxidation resistance of  this alloy. The high­temperature oxidation behaviors and the effect of solution concentration on 
the  microstructure  of  oxide  layer  were  investigated  at  850  and  900  ℃,  respectively.  The  results  show  that  the 

high­temperature  oxidation  layer  of  the  treated  alloy  is  more  compact  than  that  of  the  untreated  alloy,  and  a  higher 
oxidation  resistance  of  the  treated  alloy  is  obtained.  The  oxidation  resistance  of  the  treated  alloy  increases  with  the 

increase of NH4F solution concentration at 850 ℃, while the mass gain of the alloy after oxidation is independent of the 
NH4F solution concentration at 900 ℃. 
Key words：γ­TiAl alloy; high­temperature oxidation; fluorinated treatment; microstructure 

γ­TiAl 合金的密度低、比强度和比刚度高，在高 

温下兼具陶瓷的强度和金属韧性，是航空航天的理想 

高温结构材料。 但是， 当 γ­TiAl合金服役温度超过 850 
℃后，合金会发生严重氧化而失效，制约了 γ­TiAl合 

金在高温领域的应用。目前，改善 γ­TiAl合金抗高温 

氧化能力的方法主要是表面涂层和合金化两种 [1−3] ， 这 

两种技术都能有效地提高  γ­TiAl  合金的高温氧化抗 

力，但是都存在一定的不足。表面涂层法的主要技术 
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难点在于涂层与基体热膨胀系数不匹配，在长时间使 

用后涂层和基体会发生剥落和高温下元素互扩散，形 

成界面硬脆的析出相和 Kirkedall孔洞， 导致工件疲劳 

失效；而合金化往往在提高抗氧化性的同时导致其他 

性能(如密度和强度等)下降，使  γ­TiAl 合金的综合性 

能不能兼顾。 

研究发现，通过在 γ­TiAl合金表面涂覆一层氯化 

物或者进行表面氯化处理，可以在高温氧化时诱发， 

优先形成一层连续的氧化铝层，极大地提高 γ­TiAl合 

金的高温氧化抗力 [4−6] 。但是，进一步研究发现，由氯 

化处理形成的氧化铝阻挡层与 γ­TiAl合金基体的结合 

力较弱， 氧化层和基体界面处存在孔洞和裂纹等缺陷， 

在经历一段时间高、 低温氧化循环后会发生剥落失效， 

失去保护作用 [7−8] ， 这就限制了氯化处理技术在 γ­TiAl 
合金上的应用。近几年来， 德国的一些研究小组发现， 

表面经过氟化处理的 γ­TiAl合金在高温氧化时同样也 

能生成一层连续、致密、具有很强氧化抗力的氧化铝 

保护层 [9−10] ，而且该氧化铝层与 γ­TiAl 合金基体之间 

具有极强的结合力，可以经受  1  a  的循环氧化不剥 

落 [11] 。上述结果表明，表面氟化处理是一种极具潜力 

的  γ­TiAl 合金表面处理技术。目前，研究得较多的 
γ­TiAl 合金表面氟化处理工艺是离子注入和 HF 表面 

处 理 [9−10,12−14] 。离子注入处理需要复杂的设备， 

且处理的工件尺寸和数量受真空室限制；而 HF 溶液 

处理虽然工艺简单，但是 HF 溶液腐蚀性较强，对环 

境和人体都有潜在的危害。因此，开发一种新型具有 

工业大规模应用潜力的氟化处理工艺是目前 γ­TiAl合 

金氟化处理技术研究的重点。NH4F 具有价格便宜、 

腐蚀性小、对人体无害等优点，是一种理想的  γ­TiAl 
合金氟化处理试剂。本文作者主要研究经不同浓度 
NH4F 溶液处理的 γ­TiAl合金在 850 和 900 ℃的氧化 

动力学过程和对应氧化层的微观组织。 

1  实验 

实验材料选用工业用 γ­TiAl合金， 试样加工成 15 
mm×15 mm×2 mm的片状样品，表面经砂纸打磨后 

的机械抛光。抛光后的试样用丙酮清洗 3 次。试样分 

别用不同浓度  NH4F 稀溶液浸泡，NH4F 溶液浓度为 
0.01、0.05和 0.1 mol/L，浸泡时间为 20 s，然后，用 

蒸馏水清洗试样，去除表面残留的盐，最后用热风吹 

干。 氧化温度分别为 850和 900℃， 氧化时间为 10~100 
h，冷却方式为空冷, 用精度为 1 mg天平称量氧化前、 

后试样的质量，试样的质量增量除以总面积获得单位 

面积的质量增量。 

用X射线光电子谱仪分析氟化层的元素浓度深度 

分布和化学态演化； 用日本 Hitachi公司生产的附带能 

谱的 S−570型扫描电镜对试样氧化层表面和截面的形 

貌及元素分布进行分析。 

2  结果与讨论 

2.1  经 NH4F溶液浸泡后试样的成分及化学态分析 

图 1所示为经 0.01 mol/L NH4F溶液浸泡后 γ­TiAl 
合金氟化层成分深度分布。合金表面氟元素的摩尔分 

数达到 67 %， 溅射时间达 250 min 后仍然有 10 %F(摩 

尔分数)存在， 表明在 γ­TiAl合金表面已经形成一层氟 

化物层。 

图 1  经 NH4F溶液处理后 γ­TiAl合金成分深度分布 

Fig.1  Element  depth  profiles  of  TiAl  alloy  treated  by  NH4F 

solution

图 2(a)和(b)所示为经 0.01  mol/L  NH4F 溶液浸泡 

后 γ­TiAl合金中铝和钛元素的化学态组成及其在深度 

方向的变化规律。由图 2可知，对于铝元素，除了最 

表层是氧化铝以外，其化学态以氟化铝为主；而对于 

钛元素，其化学态为氧化钛和氟化钛的混合形式。 

图 1 所示的浓度分布曲线表明，当溅射 100  min 
后，氟的摩尔分数约为 30%。而由图 2可知，当溅射 

时间达  60  min 后，钛和铝元素只有单质元素对应的 

峰， 没有氟化物峰存在， 表明此时溅射已经达到 γ­TiAl 
合金基体。产生此现象的原因在于测试样品表面存在 

高低起伏，在离子枪溅射剥蚀过程中，突起部分溅射 

速率快，且对凹陷部分溅射产生屏蔽作用，因此，突 

起部分溅射速率远大于凹陷部分的，两部分溅射速率 

的差异导致当突起部分氟化层被溅射后，凹陷部分氟
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化层仍存在。溅射 60 min后，XPS检测到的氟信号来 

源于凹陷部分的氟化层。由图 1可知，氟化层表面氟 

浓度远大于钛和铝元素的浓度，因此，凹陷部分产生 

的钛和铝信号强度相对于突起部分钛和铝元素信号强 

度弱很多，被噪声信号所掩盖，因此，在图 2中没有 

出现相应的氟化物峰。 

图 2  经 0.01 mol/L NH4F溶液处理后 γ­TiAl合金中铝和钛 

元素化学态及其深度演化规律 

Fig.2  Chemical  states  and  their  evolution  with  depth  of  Al 

and  Ti  elements  in  TiAl  alloy  after  dipping  into  0.01  mol/L 

NH4F solution: (a) Al 2p; (b)Ti 2p 

2.2  经NH4F溶液浸泡后试样的氧化动力学过程分析 

图3(a)所示为原始γ­TiAl合金和经不同浓度NH4F 
溶液浸泡后  γ­TiAl 合金在  850 ℃氧化时的动力学曲 

线。由图 3(a)可知，在 850℃氧化时，NH4F溶液浓度 

对 γ­TiAl合金氧化抗力的增强有很大影响， 随着NH4F 
溶液浓度的增加，γ­TiAl合金氧化抗力提高：当 NH4F 
溶液为 0.01 mol/L时， γ­TiAl合金氧化 100 h 后的质量 

增量为 3.5  mg/cm 2 ，表现出与未处理试样的一致；当 
NH4F溶液浓度提高到 0.10 mol/L时， γ­TiAl合金氧化 
100 h 后的质量增量仅为 0.5 mg/cm 2 ， 远低于未处理试 

图 3  经 NH4F溶液浸泡后 γ­TiAl合金在 850和 900℃氧化 

时的动力学曲线 

Fig.3  Oxidation kinetics curves of TiAl alloy treated by NH4F 

solution at 850 (a) and 900℃(b) 

样的，高温氧化抗力得到明显提高，当氧化时间超过 
20 h后，合金的质量增量趋于平缓，氧化质量增量速 

率降低。 
γ­TiAl 合金经 NH4F 溶液浸泡后，在 900 ℃氧化 

时的动力学曲线如图 3(b)所示。原始试样的氧化速率 

远高于浸泡处理后试样的，与 850 ℃时的氧化动力学 

曲线相比，NH4F 溶液浓度的差别对合金抗氧化性的 

影响已经不明显。当氧化时间超过 10  h 后，经 NH4F 
溶液浸泡处理后， 试样的氧化质量增加速率趋于平缓。 

氧化 100  h 后，质量增量仅为 1.4  mg/cm 2 ，与其他氟 

化处理技术防护效果一致 [5] 。 

经过表面氟化处理的 γ­TiAl合金氧化抗力的提高 

源自连续氧化铝层的形成，氟化处理 γ­TiAl合金氧化 

铝的形成源自表面挥发出来的氟化铝的氧化，只有当 

氟化铝的挥发速率超过一个临界值后，表面才能生成 

连续的氧化铝层。当连续氧化铝层生成之后，合金氧
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化的控制过程为氧在氧化铝阻挡层中的扩散，氧扩散 

速度决定了氧化后质量增加的速度。由于氧在氧化铝 

层中的扩散速度极慢，因此，形成连续氧化铝层后， 

合金氧化质量增量趋于平缓，氧化速率急剧降低 [5−6] 。 

氟化铝的挥发速度与表面氟浓度和氧化温度有 

关。在 850℃氧化时，经 0.01 mol/L NH4F溶液处理后 
γ­TiAl 合金的氟化铝挥发少，不足以生成连续氧化铝 

层，因此，不能有效提高 γ­TiAl合金的氧化抗力。随 

着 NH4F 溶液浓度的增加，γ­TiAl 合金表面氟浓度增 

加，氟化铝的挥发速率增加，有利于氧化铝的生成， 

因此，随着 NH4F 溶液浓度的增加，γ­TiAl 合金的氧 

化抗力增加。当 NH4F溶液浓度增加到 0.1 mol/L且氧 

化时间超过 20 h 后，氧化速率急剧下降，氧化后质量 

增加趋于平缓，表明连续氧化铝层已经生成；当氧化 

温度达 900 ℃时，氟化铝的挥发速率大幅增加，氧化 

铝层生成速度加快， 即使经 0.01 mol/L NH4F溶液处理 

的试样，挥发出来的氟化铝也足够生成连续的氧化铝 

层，氧化控制过程为氧在氧化铝层中的扩散，因此， 

经不同浓度 NH4F 溶液处理的 γ­TiAl 合金在该温度下 

氧化后的质量增加曲线基本一致，与浓度无关。 

2.3  氧化层组织分析 

图 4(a)和(b)所示分别为未经处理的 γ­TiAl合金在 

850和 900 ℃氧化 100 h 后氧化层横截面的 SEM像， 

图 4(c)和(d)分别为对应 A和 B处的局部放大 SEM像。 

由图 4可知，未经处理的 γ­TiAl合金在 850和 900℃ 

氧化 100 h 后的氧化层厚度分别约为 30和 60 μm，氧 

化层呈疏松多孔结构，对氧扩散阻力较低，因此， 
γ­TiAl合金的高温氧化抗力较差。 

图 5(a)~(c)所示分别为经浓度为 0.01、 0.05和 0.10 
mol/L NH4F溶液处理后 γ­TiAl合金试样在 850℃氧化 

100  h后横截面组织的 SEM像。可知，随着 NH4F溶 

液浓度增加，经过处理的 γ­TiAl合金氧化层厚度逐减 

小，氧化层致密性增加，阻挡氧向基体扩散的能力增 

强，γ­TiAl 合金氧化抗力增加。图 3 所示合金氧化动 

力学曲线表明，NH4F溶液浓度为 0.01 mol/L时，合金 

氧化后的质量增量与未处理试样的相当；但是，由图 

5(a)可知，经 0.01 mol/L NH4F溶液处理后，合金的氧 

图 4  未经处理的 γ­TiAl合金在不同温度氧化 100 h后氧化层横截面的 SEM像 

Fig.4  SEM images of cross­section of untreated TiAl alloy oxide layer after oxidation at different temperatures for 100 h: (a) 850℃; 

(b) 900℃: (c) Enlargement of zone A in (a); (d) Enlargement of zone B in (b)
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图 5  经不同浓度 NH4F溶液处理后 γ­TiAl合金在不同温度氧化 100 h氧化层截面的 SEM像 

Fig.5  SEM images of oxide layer cross­section of NH4F solution treated TiAl alloy after oxidized at different temperatures for 100 

h: (a) 0.01 mol/L, 850℃; (b) 0.05 mol/L, 850℃; (c) 0.10 mol/L, 850℃; (d) 0.05 mol/L, 900℃ 

化层厚度小于未处理试样的，说明其氧化抗力大于未 

处理试样的。产生该矛盾的原因是在氧化过程中未处 

理试样的氧化层发生了局部脱落(在氧化动力学曲线 

上 20~60 h时的质量增加平台也证实了该推断)， 因此， 

测得的氧化质量增量比实际的小，而从  SEM 像观察 

到的是未发生脱落的氧化层，该厚度反映的是真实氧 

化程度，因此，经 0.01 mol/L NH4F溶液处理后 γ­TiAl 
合金的实际氧化抗力大于未处理合金的。图 5(d)所示 

为经浓度为 0.05  mol/L  NH4F溶液处理后 γ­TiAl合金 

试样在 900℃氧化 100 h 后横截面组织的 SEM像， 该 

氧化层致密性很高，有利于提高  γ­TiAl  合金的氧化 

抗力。

图6所示为经0.01 mol/L NH4F溶液处理后试样在 

850 ℃氧化100 h氧化层成分线扫描结果。 由图6可知， 

氧化层由外向内依次是氧化钛层、氧化铝层及氧化钛 

和氧化铝的混合层。该结果证实，经 NH4F溶液处理 

图 6  经 NH4F溶液处理后 γ­TiAl合金高温氧化层元素沿深 

度方向的分布 

Fig.6  Element  depth  profile  of  high  temperature  oxide  layer 

of TiAl alloy treated by NH4F solution 

后  γ­TiAl 合金在高温氧化过程中会生成连续的氧化 

铝层。
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3  结论 

1) 经 NH4F 溶液处理后，γ­TiAl合金表面生成氟 

化物层，在氟化物层中铝元素以氟化铝形式存在，而 

钛元素则是以氧化钛和氟化钛的混合物形式存在。 
2) 经过NH4F溶液处理的合金在 850和 900℃下 

的高温氧化抗力得到了提高：在 850 ℃氧化时，随着 
NH4F 溶液浓度增加，合金抗氧化性能提高，当溶液 

浓度为 0.1 mol/L时，氧化 100 h 后，合金的质量增量 

为 0.5 mg/cm 2 ，为原始合金的 1/7；在 900℃氧化时， 

合金的氧化抗力与  NH4F 溶液浓度无关，氧化  100  h 
后合金的质量增量为 1.4 mg/cm 2 ，为原始合金的 1/3。 

随着氧化时间的增加，氧化质量增加速度急剧降低。 
3) 经 NH4F溶液处理后，合金氧化层比未处理合 

金氧化层更加致密，并且生成了连续的氧化铝层，上 

述两个因素是经过 NH4F 溶液处理 γ­TiAl 合金高温氧 

化抗力提高的原因。 

REFERENCES 

[1]  贺志勇, 刘小萍, 王振霞, 徐 重.  γ­TiAl 金属间化合物表面 

改性技术研究现状[J]. 材料导报, 2007, 21(2): 83−86. 

HE  Zhi­yong,  LIU  Xiao­ping,  WANG  Zhen­xia,  XU  Zhong. 

Current status of surface modification on γ­TiAl intermetallics[J]. 

Materials Review, 2007, 21(2): 83−86. 

[2]  陈志勇, 黄因慧, 田宗军, 刘志东, 王东生.  γ­TiAl  合金表面 

高温抗氧化性工艺技术研究现状 [J].  热处理技术与装备 , 

2008, 29(1): 1−5. 

CHEN  Zhi­yong,  HUANG  Yin­hui,  TIAN  Zong­jun,  LIU 

Zhi­dong,  WANG  Dong­sheng.  Research  states  of  high 

temperature  oxidation  resistance  technology[J]. Heat Treatment 

Technology and Equipment, 2008, 29(1): 1−5. 

[3]  席艳君, 王志新, 卢金斌. TiAl基合金的高温氧化及其保护[J]. 

材料导报, 2006, 20(5): 82−85. 

XI  Yan­jun,  WANG  Zhi­xin,  LU  Jin­bin.  High  temperature 

oxidation  and  protection  of  TiAl  alloy[J].  Materials  Review, 

2006, 20(5): 82−85. 

[4]  辛 丽, 李铁藩, 李美栓, 周龙江. 氯对  TiAl 基合金高温氧化 

行为影响[J]. 腐蚀科学与防护技术, 1999, 11(3): 129−134. 

XIN Li, LI Tie­fan, LI Mei­shuan, ZHOU Long­jiang. Effect of 

chlorine on oxidation of TiAl­based alloy[J]. Corrosion Science 

and Protection Technology, 1999, 11(3): 129−134. 

[5]  SCHÜTZE.  M,  SCHUMACHER  G,  DETTENWANGER  F, 

HORNAUER U, RICHTER E, WIESER E, MÖLLER W. The 

halogen  effect  in  the  oxidation  of  intermetallic  titanium 

aluminides[J]. Corrosion Science, 2002, 44: 303−318. 

[6]  DONCHEV  A,  GLEESON  B,  SCHÜTZE  M.  Thermodynamic 

considerations  of  the  beneficial  effect  of  halogens  on  the 

oxidation resistance of TiAl­based alloys[J]. Intermetallics, 2003, 

11: 387−398. 

[7]  XIN  L,  SHAO  G,  WANG  F,  TSAKIROPOULOS  P,  LI  T. 

Improving  high­temperature  oxidation  resistance  of  TiAl­based 

alloys  by MnCl2  surface  treatment[J].  Intermetallics,  2003,  11: 

651−660. 

[8]  DONCHEV  A,  RICHTER  E,  SCHÜTZE  M,  YANKOV  R. 

Improvement  of  the  oxidation  behaviour  of  TiAl­alloys  by 

treatment with halogens[J]. Intermetallics, 2006, 14: 1168−1174. 

[9]  ZHU Y C, LI X Y, FUJITA K, IWAMOTO N, MATSUNAGA Y, 

NAKAGAWA  K,  TANIGUCHI  S.  The  improvement  of  the 

oxidation resistance of TiAl alloys by fluorine plasma­based ion 

implantation[J].  Surface  and  Coatings  Technology,  2002, 

158/159: 503−507. 

[10]  ZSCHAU  H  E,  SCHÜTZE  M,  BAUMANN  H,  BETHGE  K. 

Application  of  ion  beam  analysis  for  the  control  of  the 

improvement of the oxidation resistance of TiAl at 900 ℃ in air 

by  fluorine  ion  implantation  and  HF­treatment[J].  Nuclear 

Instruments  and  Methods  in  Physics  Research  B,  2005,  240: 

137−141. 

[11]  DONCHEV  A,  RICHTER  E,  SCHÜTZE  M,  YANKOV  R. 

Improving  the  oxidation  resistance  of  TiAl­alloys  with 

fluorine[J]. Journal of Alloys and Compounds, 2008, 452: 7−10. 

[12]  FUJITA  K.  Research  and  development  of  oxidation,  wear  and 

corrosion  resistant  materials  at  high  temperature  by  surface 

modification  using  ion  processing[J].  Surface  and  Coatings 

Technology, 2005, 196: 139−144. 

[13]  ZSCHAU H E, SCHÜTZE M, BAUMANN H, BETHGE K. The 

time  behaviour  of  surface  applied  fluorine  inducing  the 

formation of an alumina  scale on gamma­TiAl during oxidation 

at 900℃ in air[J]. Intermetallics, 2006, 14: 1136−1142. 

[14]  唐光泽, 孙科文. 氟离子注入对 TiAlNb 合金高温氧化性能的 

影响[J]. 金属热处理, 2009, 34(7): 17−19. 

TANG  Guang­ze,  SUN  Ke­wen.  Effect  of  fluorine  ions 

implantation on high temperature oxidation resistance of TiAlNb 

alloy[J]. Heat Treatment of Metals, 2009, 34(7): 17−19. 

(编辑 陈卫萍)


