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Analysis of secondary phases and measurement of
volta potential of 7A52 aluminum alloy
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Abstract: The metallographic microscope, scanning electron microscope, energy dispersive spectrometer, scanning
Kelvin probe force microscope were used to observe and characterize the secondary phases of 7A52 aluminum alloy, and
the volta potential of micron dimension secondary phases was tested. The results indicate that the 7 phase in long strip
shape is incoherent with the matrix, whose strengthening effect is relatively weak. The #' phase in disk shape semi
coherent with the matrix is the most important ageing strengthening phase. The AlgMn precipitates in approximate square
block shape distribute in the grains and grain boundaries. The Al;Zr precipitates in ball shape are very small and their
density is very high, forming a strong pinning effect on the dislocations. The irregularly shaped intermetallics AlMnFe
and Mg,Si disperse along the rolling direction in the matrix, and their volta potentials are lower than those of the matrix.
Hereby, they are easy to be dissolved and corroded in erosive environments, thus becoming the stress corrosion cracking
initiation sites. The same second phase with different sizes show different relative volta potentials to the matrix. The volta
potential of AIMnFe is lower than that of Mg,Si intermetallics, which means that AIMnFe intermetallics are easier to be
corroded in erosive environments. These measurement results will help in the crack initiation analysis in stress corrosion
cracking.
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Table 1 Chemical composition of 7A52 aluminum alloy

(mass fraction, %)

Zn Mg Mn Cr Ti
4.6 2.58 0.35 0.20 0.14
Zr Cu Fe Si Al
0.12 0.086 <0.15 <<0.10 Bal.
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Fig.1 BSED images of 7A52 aluminum alloy and second phases: (a) AlMnFe intermetallics; (b) Mg,Si intermetallics
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Fig.2 Bright-field image and electron diffraction pattern of
n' phase
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Fig.3 Bright-field image and electron diffraction pattern of
7 phase
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Fig.4 Bright-field image and electron diffraction patterns of
A13ZI'
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Fig.5 Bright-field image and electron diffraction patterns of
A16Mn
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Fig.6 Morphology of AlgMn acting as refining grains
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