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基于模糊自适应变权重算法的采场冒顶函数链神经网络预报 
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摘  要：为提高采场声发射事件率预报精度，将采场声发射事件率不同的单个预测模型的预测值作为函数链神经
网络的原始输入值，并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值，在分析

函数链神经网络拟合充要条件的基础上，结合模糊自适应变权重算法计算函数链神经网络权重，对采场声发射事

件率进行基于模糊自适应变权重算法的函数链神经网络预测，对其预测结果再进行函数链神经网络算法拟合，然

后结合采场冒顶尖点突变模型的判别式对采场冒顶进行预报。某铅锌矿采场冒顶预报结果表明，基于模糊自适应

变权重算法的函数链神经网络预测方法的预测误差小于 0.3%，可实现采场冒顶精确预报。 
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Prediction of functional link neural network of roof caving based on 
 fuzzy adaptive variable weight method 
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(School of Resource and Safety Engineering, Central South University, Changsha 410083, China) 

 
Abstract: In order to enhance the predict precision about happening rate of acoustic emission in mine, the happening rate 
of acoustic emission in mine was forecasted based on functional link neural network due to fuzzy adaptive variable 
weight algorithm by using of making some forecasting values from different single forecasting model of happening rate 
of acoustic emission in mine as original input values of functional link neural network, making the original input values 
as patulous input values of functional link neural network after the original input values being extended according to the 
orthogonal trigonometric function, analyzing the necessary and sufficient conditions of functional link neural network 
fitting and calculating the weight of functional link neural network based on fuzzy adaptive variable weight algorithm. 
And the roof caving can be predicted when the forecasting results is fitted by functional link neural network algorithm 
and the discriminant of roof caving abrupt change model. The forecasting results of happening rate of acoustic emission 
in some lead and zinc mine reveal that the functional link neural network forecasting method based on fuzzy adaptive 
variable weight algorithm is higher than that of other forecasting model and its forecasting error is smaller than 0.3%. 
And the precision predicting roof caving is able to be realized due to the functional link neural network forecasting. 
Key words: functional link neural network; fuzzy adaptive variable weight method; prediction; roof caving; acoustic 
emission 

                      
 
对于采场这样的复杂工业系统来说，由于往往存

在内部结构复杂，影响因素和评价指标较多，预测总

是在不确定且不稳定的环境下进行的[1−2]，信息集和处

理信息能力的局限性、复杂工业系统的结构性调整、

新理论与新技术的发展以及复杂工业系统结构中的非

线性等不确定和不稳定的因素都会导致预测模型的不

确定性和预测的风险。如果采用不同的单个预测模型

或部分因素和指标来对其输入、输出进行模拟、预测 
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和调控，然后按照预测精度大小从众多的预测方法中

选择结果最好的单项预测方法，只能体现所研究的系

统的局部，而并非提高预测精度的好办法[3]。不同的

定性预测方法各有其优点和缺点，它们之间并不是相

互排斥的，而是相互联系、相互补充的，而 BATES
和 GRANGER[4]以及 AKSV和 GUNTER[5]提出的组合

预测方法为复杂工业系统预测精度提高提供新思路。 
利用组合预测方法的关键是确定单个模型的权 

重[6−10]。由于不同预测方法特点的差异及现实世界复

杂多变，每种模型往往有“时好时坏”的现象，故变

权组合预测成为提高精度的有效途径。在现有的成果

中，变权组合预测权重的确定是以观测期的观测值为

基础，主要以预测误差最小或精度最大为目标求得各

期权重[6−14]。在已有的变权重确定方法中，因预测期

无观测值，有些方法不能使用，即使有些方法可    
用，也没有将已获得的预测信息充分用于确定后期的

权重。 
函数链神经网络(Functional link neural network，

FLNN )[15−16]通过对原来的输入模式进行扩展增强，可

在更高维空间中描述该模式，将增强后的模式作为神

经网络的输入，这样在没有加入任何新的“特定”信

息条件下就增强了模式的表达，从而使原来在低维空

间中不可分的模式在增强的空间里获得可分性，可克

服上述缺陷，并具有良好的非线性逼近能力，因而可

视为采场这种复杂工业系统预测的一种有效途径。 

当采场中的岩体发生变形时，内部积聚的能量释

放时有一部分以声波形式传播，这种现象称为岩体声

发射(Acoustic emission, AE)[17]。于是通过监测岩体声

发射即可监测岩体稳定性，这也成为采场冒顶监测的

常用工具。考虑到采场声发射事件率观测值需进行长

时间的检测或人工分析和计算得到，为减少样本获取

过程中多次改变系统控制量的设定点，影响实际系统

的正常运行，需要一种只需少量样本就能获得较好性

能的预测方法。为此，本文作者提出一种模糊自适应

变权重函数链神经网络预测方法，将模糊自适应变权

重算法引入函数链神经网络，以改善函数链神经网络

的泛化能力。 

 

1  基于非线性模糊自适应变权重算
法的函数链神经网络 

 
1.1  函数链神经网络结构 

BP神经网络具有一定的非线性逼近能力，但存在
着固有的缺陷：学习收敛速度慢，中间隐层节点数的

选择无规律，易于陷入计算能量局部极小，因而只能

用于粗略的回归，难以实现精确的拟合，且不易硬件

实现。而函数链神经网络到通过对输入的函数扩展，

将多层网络缩为单层网络，使该网络具有极强的非线

性映射能力，达到快速高效的学习目的，避免陷于局

部最小的问题，从而成为一个应用极广的神经网络  
模型。 

函数链神经网络具有很强的映射功能，能构造出

任意复杂的连续函数。其基本思想是通过采用一组线

性无关(或正交)函数将原输入样本扩展模式矢量，在

维数更高的空间上进行模式的表示和区分，得到了在

增强的空间里的多个独立的新输入样本再输入到单层

前向网络。函数扩展采用了模式识别的思想，在没有

引入新的信息条件下，将低维模式变换到高维模式，

增强了模式的表达，使原来在低维空间中的非线性问

题在高维空间中得到解决。由于增加了扩展过程，函

数链神经网络能实现多层感知机的功能；同时，在学

习中仅为单层运算，故其收敛速度极快，且不会陷入

局部最小，因此，能用于精确估计和拟合。 

函数链神经网络在结构上有两部分组成：函数扩

展和单层感知器，分别如图 1和 2所示。函数扩展部

分进行某种非线性变换。由此将每一输入分量 xk变换

为一系列线性独立函数 fl(xk)，f2(xk)，⋯，fn(xk)。从而

将模式矢量的空间维数变为独立函数的高空间维数。

这样，新的信息表述空间扩展了，使单层网络具有了

分辨复杂对象的能力。 

 

 

图 1  函数链神经网络函数扩展 

Fig.1  Functional extending of functional link neural network 

 

 
图 2  单层感知器 

Fig.2  Single-layer perceptron 
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1.2  非线性模糊自适应变权重函数链神经网络预测
模型建立 
对于复杂工业过程非线性时间序列 X=(x1，x2，⋯，

xm)所组成的 m 维相空间的预测问题，设有 K(K＞2)
种常规预测方法 f1(xi)、⋯、fi(xi)、⋯、fK(xi)(i=1，2，⋯，
m)作为如图 3所示的非线性模糊自适应变权重函数链
神经网络的 K个原始输入 u1=f1(xi)、⋯、ui= fi(xi)、⋯、
uK=fK(xi)，经函数扩展从而形成实际的神经元输入
vm(m=1，2，⋯，K+N)。从均方值的意义考虑，函数
展开采用较其他的正交基函数位函数逼近简洁的正交

的三角函数来完成函数展开。 
对于一个事先定义好的函数展开阶次 S，这个神

经元的实际输入 v 为：{uk，{cos(sπuk)，sin(sπuk)}}，
k=1，2，⋯，K，s=1，2，⋯，S。通过这种方式，将
增加 N=2SK 辅助输入。单神经元的激活函数为
Sigmoid函数，则函数链神经网络的输出 Y可表示为 
 
Y=1/(1+e−z)                                  (1) 
 
式中：z=θ0+y，θ0为神经元的阈值；y为神经元的原始
输入以及经函数扩展开后增加的输入与权值乘积之

和，可表示为 
 

1

K N

m m
m

y w v
+

=
= ∑                                (2) 

 
式中：vm 为原始各个输入 un 经过函数展开式{uk，

{cos(sπuk)，sin(sπuk)}}而获得。 
 

 
图 3  函数链神经网络预测模型 

Fig.3  Functional link neural network forecasting model 

 
1.3  函数链神经网络拟合充要条件 
设 K个原始输入 u1、⋯、ui、⋯、uK经函数扩展

后有 N+K 个分量：v1i、v2i、⋯，v(N+K)i，以及 N+K+1
个权向量：w0，w1，⋯ w(N+K)。 
根据函数链神经网络输出 Y=1/(1+e−z)，欲使 Yi=xi，

则 zi=ln[xi /(1−xi)]，xi 与 zi 有一一对应关系。而

∑wi·vii−θ=zi，令 w0=−θ，则 w0+∑wi·vii=zi。 
对于复杂工业过程非线性时间序列 X=(x1，x2，⋯，

xm)，有 
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从而，使网络输出 Y=[Y1，Y2，⋯，Ym]拟合非线

性时间序列 X=[x1，x2，⋯，xm]的问题就变成求解权
系数W=[w0，w1，⋯，w(N+K)]的问题。 

1) 若 N+K+1=m，即扩展函数的个数 N+K+1与输
入样本个数 m相等时，由于扩展函数均选为正交或线
性无关的函数，所以，X=[x](N+K)K是正定的，X≠0，则
W=X−1Z有唯一封闭解。 

2) 若 N+K+1＞m，则可将 X 矩阵分块，得到分
块阵 XB，其维数为 m×m，XB≠0。令 wm+1=wm+2=⋯= 
wN+K=0，则 W=XB

−1·Z。如果不对 X 进行分块，则 W
有无穷多解。 

3) 若 N+K+1＜m，则式(1)无精确封闭解。 
因此，只要在扩展函数集中使用足够多的附加正

交函数，使 N+K+1≥m，则 FLNN就能由单层网络解
决非线性估计和拟合问题。此外，网络采用具有平滑

特性的函数 Y=1/(1+e−z)输出，有利于插值点之间的光
滑过渡。 
 
1.4  模糊自适应变权重算法 
在非线性模糊自适应变权重函数链神经网络预测

模型中，关键是确定非线性模糊自适应变权重函数链

神经网络预测模型的权系数，从而真正达到综合不同

预测方法的信息、提高预测精度的目的。 
设函数链神经网络经函数扩展开后在 i 时刻第 j

个输入值的误差 ej(i)以及预测对象在 i 时刻的实际值
xi相对于前 t 个时刻的实际值的算术平均值的变化量
cj(i)，由式(4)可以确定： 
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                     (5) 
 
式中：j=0，2，⋯，N+K；i＝1，2，⋯ t；t为一确定
值，由具体预测对象决定；fj(i)为函数链神经网络经函
数扩展开后在 i时刻第 j个输入值的预测值。 
1.4.1  模糊运算器 
预测相对误差 ej(i)(j=1，2，⋯，N+K；i＝1，2，⋯，
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t)的模糊化过程为[18]：先将 ej(i)把的变化范围统一设为
[−1，1]，将连续论域[−1，1]划分为若干段，每一段对
应一个离散点，由此得到 ej(i)的离散论域 U。并用 A
表示相对误差的语义变量，令其在离散论域 U上取 5
个语义值，如表 1所列。 
 
表 1  预测相对误差离散论域上对应的语义值 

Table 1  Corresponding semantic value in discrete region 

about forecasting value of relative errors 

U Semantic value Discrete area 

[−1, −0.5) A1 X1 

[−0.5, 0) A2 X2 

0 A3 X3 

(0, 0.5] A4 X4 

(0.5, 1) A5 X5 

 

在实际情况中，由于函数链神经网络经函数扩展

开后的输入值在 i 时刻的实际值相对于前 t 个时刻的
实际值的变化量 cj(i)的变化范围不在连续论域[−1，1]
之间，而在[−M，M]( M 为正整数，其取值由具体问
题确定)之间，则可通过式(3)将在[−M，M]之间变化的
变量 cj(i)转化为连续论域[−1，1]之间的变量 cj(i)。 
 

Micic jj /)()( =′                               (6) 
 
此外，归一化前的函数链神经网络经函数扩展开

后输入值的权重 lj (i)的变化范围为[0，1]，故只要在   
lj(i)所对应的连续论域上进行相应的离散化，得出离散
论域上的相应语义值即可。 
令 E 为函数链神经网络经函数扩展开后 i时刻第

j 种输入值偏离真实值的大小，C 为函数链神经网络
经函数扩展开后 i 时刻第 j 种输入值偏离或趋向于真
实值的程度，Kij为函数链神经网络经函数扩展开后 i
时刻第 j 种输入值的模糊权重，根据事先制定的控制
规则[18]： 

if  E= ej(i)  and  C= )(ic j′ ，then Kij= )(ik j′  
 
这样就设计了一个双输入(ej(i)， )(ic j′ )单输出(Kij)

的模糊运算器，然后在对输出的模糊权重 Kij进行模糊

判决，将其转化为精确权重 )(ik j′ ，最后进行归一化处

理，得到在函数链神经网络经函数扩展开后 i时刻第 j
种输入值的模糊权重为 
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( ) ( ) / ( )

N K

j j j
j
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+

=

′ ′= ∑                         (7) 

 
1.4.2  模糊变权重组合方法 

若用 i 时刻前 t 个时期的实际值 x(i−t)、

x(i−t+1)、⋯、x(i−1)来预测 i时刻的值 x(i)，则函数链
神经网络经函数扩展开后 i 时刻第 j 个输入值的误差
ej(i)以及预测对象在 i时刻的实际值相对于前 t个时刻
的实际值的变化量 )(ic j′ 相对于 t时刻的实际值的灰色
基本权重 p[ej(i)]、q[ej(i)]分别为 
 

1 1
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                         (8) 

 
2 2
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式中： 1 min min ( )jj i
e iα = ； 1 max max ( )jj i

e iβ = ；δ称

为灰色关联度分辨系数，在本模拟中，取 δ=0.5；

2 min min ( )jj i
c iα ′= ； 2 max max ( )jj i

c iβ ′= 。 

则函数链神经网络经函数扩展开后第 j 个输入值
的基本权重 lj(i)由式(10)确定：  

( ) [ ( )] (1 ) [ ( )]j i j i jl i p e i q c iβ β ′= + −               (10) 

式中：βi为自适应调节系数，0＜βi＜1。 
自适应调节系数 βi 采用如下方法进行自适应确

定： 
 

11
G

i
i

i
β −⎛ ⎞= − ⎜ ⎟

⎝ ⎠
                             (11) 

 
式中：G为一正数，一般按式(12)取得。 
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式中：ε= p[ej(i)]/q[c′j(i)]。 
因此，进行归一化处理，则可得函数链神经网络

经函数扩展开后在 i 时刻第 j 个输入值的模糊自适应
权重为 
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( ) ( )
( )
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j N K
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式(13)描述了函数链神经网络经函数扩展开后各

种输入值在某时刻前一段时期内全面的、平均的预测

效果对加权系数的影响，它使得函数链神经网络经函

数扩展开后各种输入值的权重分配更合理，将大大地

提高预测精度。 
求得归一化后的函数链神经网络经函数扩展开后

各种输入值的权重 wj(i)后，利用 fj(i)，就可以对 i时刻
作出预测，i时刻的预测值由式(14)决定： 

＞

＜ ＜
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0
( ) ( ) ( )

N K

j j
j

f i w i f i
+

=
= ∑                         (14) 

 
式中：j=0，1，⋯，N+K；i＝1，2，⋯。 
 

2  铅锌矿冒顶预测应用实例 
 
2.1  尖点突变模型 

Thom 证明，控制参数不超过 4 维，状态参数不
超过 3维的系统，只有 7种突变形式，但常用的是相
空间为 3维势函数的尖点突变模型。该尖点突变模型
可为边坡、滑移、地震突发、采场坍塌等突出不连续

现象问题的解决提供很好的理论基础。 
尖点突变模型的正则函数形式为 

 
V(x)=x4+ux2+vx                              (15) 
 
式中：x为状态变量；u、v为控制变量。 
尖点突变模型的临界点为 V′(x)=0 的解的集合为

平衡曲面，即 
 
4x3+2ux+v=0                                (16) 
 
设想岩体状态由 x、u、v 为坐标的三维空间的一

点来表示，并称该点为相点，则相点必定总在 V′(x)=0
上，即位于顶叶或底叶，因为中叶对应于岩体不稳定

状态。 
平衡曲面的临界点的集合(奇点集)可表示为 

 
12x2+2u=0                                 (17) 
 
由式(16)和(17)消去x得尖点突变模型的判别式为 

 
∆=8u3+27v2                                 (18) 
 

∆=0的控制点(u, v)的点集称为分歧点集，控制点
(u, v)发生变化，相应点在平衡曲面上相应变化，但当
控制点轨迹越过分歧点集 8u3+27v2=0时，相应点必经
过中叶产生跳跃，即岩体失稳，即： 

1) 若 ∆＞0，采场顶板稳定； 
2) 若 ∆=0，则采场顶板处于临界状态； 
3) 若 ∆＜0，采场发生冒顶。 
对于尖点突变模型的正则函数 V(δ)，利用泰勒级

数展开，并截尾至 4次项，则有 
 
V(δ)=w0+w1δ+w2δ2+w3δ3+w4δ4                  (19) 
 
令 x=δ+w3/(4w4)，消去式(18)中的 3次项和常数项

w0，可得 u=6[w3/(4w4)]2+w2/w4−3，v=w1/w4−[w3/(4w4)]3− 
2[w3/(4w4)]w2/w4，则可得到式(15)所示的尖点突变模型
的正则函数形式，因此，式(19)和(15)是微分同胚变换。 

2.2  尖点突变模型的正则函数拟合 
式(19)中的常系数 w0、w1、w2、w3、w4可将经非

线性模糊自适应变权重函数链神经网络预测后的声发

射特征状态变量 xi(i=1, 2, ⋯)代入式(19)，并应用函数
链神经网络拟合法求出，并进而求出 u、v 和 ∆ 值，
具体过程如下。 
假设采用如图 4所示的函数链神经网络对经非线

性模糊自适应变权重函数链神经网络预测后的状态变

量 xi(i=1, 2, ⋯)进行拟合，其预测输出值 X(xi)可以用
一幂级数 4次多项式描述，则 
 

2 3 4
0 1 2 3 4( )i i i i iX x w w x w x w x w x= + + + +           (20) 

 
图 4中 wj(j=0，1，2，3，4)为网络的连接权值。

连接权值的个数与反非线性多项式的阶数相同，即

j=4，函数链神经网络的输入值为 1、xi、xi
2、xi

3、xi
4。 

函数链神经网络的输出值 est ( )ix k 为 
 

4
est

0
( ) ( )j

i i j
j

x k x w k
=

= ∑                          (21) 

 
式中：wj(k)为第 k 步时的权值，且 wj(k+1)=wj(k)+ 
ηiej(k)xi

j，ej(k)=Xi−xi
est(k)，ηi为学习因子，它的选择影

响到迭代的稳定性和收敛速度，取 ηi=1−k/M，M为最
大迭代次数，Xi为声发射特征状态变量第 i 个预测值
对应的实际测量值。 

 

 
图 4  函数链神经网络示意图 
Fig.4  Schematic diagram of function link NN 
 
函数链神经网络的输出值 xi

est(k)与状态变量第 i
个预测值对应的实际测量值 Xi进行比较，经函数链神

经网络学习，求出函数链神经网络的输出估计值与声

发射特征状态变量第 i 个预测值对应的实际测量值 Xi

均方差在全局范围内的最小值： 
 

2
4

est 2

1 1 0
min [ ( ) ] min ( )

N N
j

i i i j i
i i j

x k x x w k x
= = =

⎡ ⎤
− = −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑  (22) 
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即该最小值是关于权值 w0、w1、w2、w3和 w4的

函数。一般而言，权值 w0、w1 为同一数量级，w2比

w1至少低一个数量级，w3比 w2和 w4比 w3均相应低较

多的数量级。所低的数量级由声发射特征状态变量的

非线性程度确定。 
 
2.3  铅锌矿冒顶预测实例 
某铅锌矿一矿区采用下向胶结充填采矿法，随着

采矿作业的进行，采场稳定性问题日趋突出。为保证

采矿作业的安全，采用声发射技术对采场顶板稳定性

进行监测。测试地点选在四工区 25#至 40#进路之间。

这些进路处在矿体边界，为一期进路，无假顶，矿岩

节理裂隙发育，破碎，稳定性很差，一经揭露便可能

发生冒顶。为了建立适合这类地质和开采条件矿岩破

坏过程的声发射特征预测模型，同时消除声发射源与

测试点距离的影响,每天测试为同一时间、同一地点进
行。现以 28#进路为例，根据其工程地质条件，采用

声发射事件表征进路顶板岩体状态。表 2 所列为 28#

进路在一定时期内测得的声发射参数值。 
 
表 2  28#进路声发射参数值 

Table 2  AE parameter values in No.28 stope 

Monitoring  
date 

9.18 9.19 9.20 9.21 9.22 9.23 9.24

AE value 
(times·min−1) 

3.1 1.2 4.2 2.3 5.6 8.7 11.4

 
选用灰色系统预测方法、指数回归预测方法和指

数平滑预测方法分别对表 2 所示的 28#进路声发射参
数值进行预测，则有 3 个原始输入 u1、u2、u3，设函

数展开阶次 S=1，则辅助输入量的数目 N=2SK= 
2×1×3=6，故经函数扩展后有 9 个输入分量以及 10
个权向量。 

28#进路声发射参数时间序列 X=[x1，x2，⋯，x7]
的问题就变成求解权系数W=[w0，w1，⋯，w9]的问题。
由于 N+K+1=10＞7，则可将 X 矩阵分块，得到分块
阵 XB，其维数为 7×7，XB≠0。令 w8=w9=0，则W=XB

−1Z。
可见 28#进路声发射参数时间序列 X=[x1，x2，⋯，x7]
能由单层网络解决非线性估计和拟合问题。 
将灰色系统预测方法、指数回归预测方法、指数

平滑预测方法的单个预测结果作为函数链神经网络预

测模型的原始输入，经函数扩展后，采用模糊自适应

变权重组合方法(用 F2表示)来进行组合预测，其预测
结果与文献[19]中方法(用 F1 表示)的预测结果进行对
比，具体情况如表 3所列。从表 3可以看出，文献[19]
中方法和本研究提出的预测模型的预测精度都较高，

均能满足非线性的预测要求，但本研究提出的预测模

型的预测误差更小，具有更高的预测精度。 
 
表 3  28#进路声发射参数值和预测值 

Table 3  AE parameter values and prediction values in No.28 

stope 

Forecasting value from model/ 
(times·min−1) 

Date 
AE value/

(times·
min−1) F1

Forecasting 
error/% 

F2 
Forecasting 

error/% 

2009−09−18 3.1 3.1 0.0 3.1 0.0 

2009−09−19 1.2 2.2 1.0 1.4 0.2 

2009−09−20 4.2 4.1 −0.1 4.3 0.1 

2009−09−21 2.3 3.1 0.8 2.5 0.2 

2009−09−22 5.6 5.9 0.3 5.7 0.1 

2009−09−23 8.7 9.1 0.4 9.0 0.3 

2009−09−24 11.4 11.3 −0.1 11.4 0.0 

2009−09−25  16.2  15.3  

2009−09−26  19.8  18.5  

2009−09−27  23.6  21.3  

 
将表 3 中文献[19]中方法和本研究提出的预测模

型所得到的声发射参数预测值代入突变模型的微分同

胚变换式(19)，并应用函数链神经网络拟合法求出，
并进而求出 u、v和 ∆值，具体结果如表 4所列。 
由表 4中 ∆值评价可知，本研究提出的预测模型

预报 9月 27日出现 ∆＜0(而文献[19]中方法预报 9月
27日出现∆＞0)，说明 9月 27日可能会出现采场冒顶，
因而作出了预报。实际情况是，9月 27日凌晨距监测
点 3.5 m远处出现了一次大冒落，体积达 25.4 m3，由

于事先作出了预报，人员设备及时撤离了现场，避免

了一场安全事故的发生，这说明本文作者提出的预测

模型的预报结果与实际情况十分吻合。 
 
表 4  采场冒顶预测预报表 

Table 4  Prediction of roof caving 

∆ value estimation 
Date 

F1 F2 

2009−09−23 173 232 188 324 

2009−09−24 3.56×1013 2.62×1013 

2009−09−25 1 359.256 495.765 

2009−09−26 784.4 297.8 

2009−09−27 323.2 −23 604 
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3  结论 
 

1) 基于应用声发射技术，结合函数链神经网络理
论、模糊自适应变权重算法以及冒顶尖点突变理论，

建立了采场冒顶的预报模型，并对某铅锌矿一矿区的

一次冒顶进行了预报，应用结果表明，该预测模型的

预测误差小于 0.3%，能满足非线性的预测要求，并具
有较高的预测精度。 

2) 基于模糊自适应变权重算法的函数链神经网
络预测方法建模数据少，计算简便，预测结果精度较

高，方法简便，易于实际应用，具有广泛的适用性，

可实现采场冒顶精确预报。 
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