
第 21 卷第 3 期 中国有色金属学报  2011 年 3 月 
Vol.21 No.3  The Chinese Journal of Nonferrous Metals  Mar. 2011 

文章编号：1004­0609(2011)03­0656­07 

Li4Ti5O12 的溶胶−凝胶合成及其电化学性能 
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(湘潭大学 化学学院，环境友好化学与应用教育部重点实验室，湘潭  411105) 

摘 要：以乳酸(LA)为配位剂，Ti(OC4H9)4 和  LiAc∙2H2O 为原料，通过溶胶−凝胶法制备具有优良电化学性能的 

电极材料  Li4Ti5O12。采用热重分析(TG)、X 射线衍射(XRD)、扫描电镜(SEM)、恒流充放电以及循环伏安(CV)等 

方法对合成的材料进行结构表征和电化学性能测试。结果表明：在 800℃烧结 18 h制备的样品颗粒分布均匀、结 

晶度良好、电化学性能优良。  0.5  C 倍率的首次放电比容量为  184.32  mA∙h/g，50 次循环后仍然保持在  155.62 

mA∙h/g。 
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Sol­gel synthesis and electrochemical performance of Li4Ti5O12 
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Abstract:  The  electrode  material  Li4Ti5O12  with  excellent  electrochemical  properties  was  synthesized  by  a  sol­gel 
method using lactic acid (LA) as chelating agent, tetrabutyl  titanate and lithium acetate dihydrate as raw materials. The 
structure  and  electrochemical  properties  of  Li4Ti5O12  samples  were  determined  by  thermogravimetry  (TG),  X­ray 
diffractometry (XRD), scanning electron microscopy (SEM), charge­discharge cycling and cyclic voltammogram (CV). 
The results indicate that Li4Ti5O12 synthesized at 800℃ for 18 h has fine crystallization, uniform particle distribution and 
good electrochemical performance. The initial discharge capacity  is 184.32 mA∙h/g, and the discharge capacity remains 
155.62 mA∙h/g after 50 charge­discharge cycles at 0.5 C rate. 
Key words: lithium ion battery; Li4Ti5O12; lactic acid; sol­gel method 

锂离子电池具有比容量高、工作电压高、应用温 

度范围广、自放电率低、循环寿命长、无污染、安全 

性能好等独特的优势，因此得到人们的广泛关注 [1−3] 。 

理论上具有层状、三维立体网络或隧道等开放性的结 

构，能允许锂离子嵌脱且电极电位比较低的一些化合 

物，可用作锂离子电池负极材料 [4] 。Li4Ti5O12 的结构 

与尖晶石LiMn2O4的很相似， 可表示为Li[Li1/3Ti5/3]O4， 

是一种“零应变”嵌入型电极材料， 其理论比容量为175 
mA∙h/g [5] ，空间点阵群为  m Fd 3  ，晶胞参数 a为 0.836 
nm。当锂插入时还原为深蓝色的  Li2[Li1/3Ti5/3]O4，晶 

胞参数 a为 0.837 nm [6] 。 
Li4Ti5O12 具有充放电效率高、充放电平稳、抗过 

充性较好、热稳定性和电化学性能良好的特点，适合 

用作锂离子电池电极材料。目前， Li4Ti5O12 的合成方 
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法主要有固相法 [7−9] 和溶胶−凝胶法 [10−18] 。固相法具有 

合成方法简单、操作步骤少及生产效率高等优点，但 

由于受合成条件(固相扩散)的影响，采用此法所制备 

的材料往往存在成分不均匀、结构和形貌较难控制以 

及导电性和倍率性能较差等缺陷 [9] 。 虽然溶胶−凝胶法 

较固相法复杂，但是用溶胶−凝胶法制备的产物纯度 

高，颗粒粒径小而可控。配位剂对产品结构和电化学 

性能的影响较大。目前，关于溶胶−凝胶法制备 
Li4Ti5O12 常用的配位剂有醋酸 [11] 、三乙醇胺 [12] 和柠檬 

酸 [13, 18] 等，且都能用于制备颗粒细小、分散均匀及电 

化学性能优良的样品。如 HAO 等 [12] 以三乙醇胺为配 

位剂，用溶胶−凝胶法制备了颗粒均匀、平均粒径为 
80 nm的 Li4Ti5O12 样品，以 23.5 mA/g电流密度充放 

电，首次放电容量为 168 mAh/g。YANG等 [18] 以柠檬 

酸为配位剂， 用溶胶−凝胶法制得的尖晶石型Li4Ti5O12 

样品，在 0.1 C和 0.5 C倍率下充放电，循环 50次后， 

比容量分别为 154和 131  mA∙h/g。乳酸(2−羟基丙酸) 
也是一种较好的配位剂，与其他配位剂一样能与过渡 

金属形成稳定的配位化合物，能有效地抑制过渡金属 

离子的水解，从而调节溶胶−凝胶化速度，在一定程 

度上可以控制产物的粒径和改善产物的电化学性 

能 [19] 。但是，目前以乳酸为配位剂制备 Li4Ti5O12 的研 

究鲜见报道。 

为此，本文作者以乳酸作为配位剂、钛酸丁酯与 

醋酸锂为原料，通过溶胶−凝胶法制备  Li4Ti5O12 前驱 

体，合成结晶度较高及粒径分布均匀的尖晶石样品 
Li4Ti5O12，并对样品的结构和电化学性能进行研究。 

1  实验 

1.1    Li4Ti5O12 的制备 

在  25 ℃下，将钛酸丁酯溶于一定量的无水乙醇 

中，搅拌均匀得到钛酸丁酯乙醇溶液，再逐滴加入适 

量的乳酸，搅拌 30 min 后得到溶液 A。将醋酸锂溶于 

无水乙醇和水的混合溶液中，搅拌至醋酸锂完全溶解 

得到溶液 B。将溶液 B滴加至溶液 A中，继续搅拌直 

至形成白色透明凝胶，溶胶中  n(Li):n(Ti)=0.841׃，将 

此凝胶陈化 4 h 后于 80℃干燥 12 h，得到黄色干凝胶 

即 Li4Ti5O12 前驱体。 将此前驱体经 ND2−2L行星式球 

磨机球磨 3 h后，置于 SX−5−13型箱式电阻炉中先在 
500 ℃预烧 5 h， 再分别在 700、 800和 900℃烧结 18 h， 

得到不同的焙烧样品。自然冷却至室温后样品在研钵 

中稍微研磨放入干燥箱中保存备用。 

1.2  热重分析测试 

采用  WRT−3P  型热分析仪，在空气气氛中以 
10 ℃/min的加热速率对前驱体在 25~900 ℃进行热重 

分析，从而初步确定生成的 Li4Ti5O12 温度范围。 

1.3  Li4Ti5O12 的结构和形貌测试 

采用日本理学D/Max−3C型X射线衍射仪对合成 

样品进行结构分析，射线源为  Cu  Kα，管电流为  20 
mA，管电压为 36 kV，扫描速度为 8 (°)/min，扫描范 

围 2θ为 10°~80°； 采用 Hitachi X−650型扫描电子显微 

镜观察样品的颗粒大小和表面形貌；采用法国 
CILAS1064型激光粒度测试仪分析样品的粒度分布。 

1.4  电极制备和模拟电池组装 

将原料按照质量比  m(Li4Ti5O12):m(乙炔黑 ): 
m(PVDF(聚偏氟乙烯))=85:10:5，在溶剂 NMP(N−甲基 
−2−吡咯烷酮)中混合成均匀浆料，搅拌均匀，超声波 

分散 20 min，分散混匀后继搅拌得到均匀浆料，将浆 

料均匀涂成极片后，于 80℃真空干燥 12 h。 将干燥好 

的极片在充满氩气的手套箱(MIKROUNA  1220/750) 
中组装成 2025型扣式电池。 其中， 以金属锂片为负极， 

电解液为1 mol/L LiPF6的EC/DEC溶液(体积比为1:1， 

韩国三星公司生产)，聚丙烯多孔膜(Celgard2400)为隔 

膜。 

1.5  电化学性能测试 

采用深圳新威公司生产的电池充放电测试系统对 

组装的模拟电池进行充放电测试，电压测试范围为 
1.0~3.0  V(测试温度为(25±2) ℃)；用上海辰华公司生 

产的 CHI660A电化学工作站进行循环伏安测试， 扫描 

电压范围为 1.0~3.0V。 

2  结果和讨论 

2.1  热重分析 

图  1 所示为前驱体干凝胶在  0~900 ℃的热重曲 

线。由图 1可见，在 200℃前的质量损失达到 14%， 

主要是前驱体凝胶粉末中少量水、 乙醇和乙酸的挥发， 

以及醋酸锂的表面吸附水或结晶水的损失所引起，主 

要的化学反应为(1)~(5)。 

Ti(OC4H9)4+4H2O  Ti(OH)4+4C4H9OH  (1) 
Ti(OH)4 →   TiO2∙2H2O  (2) △
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TiO2∙2H2O+2CH3CH(OH)COOH 
(CH3CHOCOO)2Ti∙3H2O  (3) 

CH3COOLi∙2H2O+CH3CH(OH)COOH+(x−2)H2O= 
LiOCH(CH3)COOLi∙xH2O+CH3COOH  (4) 

CH3COOLi∙2H2O+Ti(OC4H9)4+CH3CH(OH)COOH+ 
(3+x)H2O=Ti(OH)3OCH(CH3)COOLi∙xH2O+ 
C4H9OH+CH3COOH  (5) 

图 1  Li4Ti5O12 前驱体的 TG曲线 

Fig.1  TG curve of Li4Ti5O12 precursor 

在  240~400  ℃出现一个较大的质量损失峰(约 
30%)，是由醋酸锂及乳酸燃烧放出 CO2 和 H2O 所引 

起，同时，含钛有机物在高温下反应生成 TiO2 化合物 

也造成前驱体质量减少，反应方程为 

CH3CH(OH)COOH+O2=CO2↑+3H2O  (6) 
CH3(CH3CHOCOO)2Ti∙2H2O+O2=TiO2+3H2O+ 

CO2↑  (7) 
CH3CH(OH)COOLi∙2H2O+O2=LiCO3+CO2+H2O 

(8) 
Ti(OH)3OCHCH3OOLi∙H2O+O2=TiO2+LiCO3+ 

CO2↑+H2O  (9) 

在温度为 400~625℃时的热质量损失主要由碳酸 

锂的分解产生，并按式(10)形成 Li4Ti5O12。 
TiO2+LiCO3=Li4Ti5O12+CO2↑  (10) 

当温度高于 625 ℃时，TG 曲线逐渐平稳，说明 

锂钛氧化合物已经形成并开始晶化。由此可见，以乳 

酸为配位剂，用溶胶−凝胶法得到的前驱体合成 
Li4Ti5O12 的温度应该高于 625 ℃。此外，乳酸燃烧放 

出的热量可部分弥补合成 Li4Ti5O12 时所需的热量。但 

是，要获得纯度高、晶形完整及电化学性能优良的 
Li4Ti5O12 需要更长的时间或更高的温度。 

2.2  Li4Ti5O12 的结构和形貌分析 

图 2所示为前驱体在不同温度下烧结 18 h所得到 

样品的 XRD谱。图 2中 700、800和 900 ℃下样品的 

衍射峰与标准  JCPDS 卡片(26−1198)的衍射峰吻合， 

说明所制备的样品是具有尖晶石结构的 Li4Ti5O12，图 
2 中衍射峰尖锐表明生成的样品晶形完整。由图 2 可 

知，700 ℃时产物的衍射峰尖锐，表明 Li4Ti5O12 已基 

本生成，但是有少量金红石型 TiO2 存在，说明该温度 

下还存在未转化为尖晶石 Li4Ti5O12 的金红石型 TiO2。 
800 ℃时衍射峰强度更高，金红石型 TiO2 完全消失， 

此时的衍射峰与  JCPDS 卡片(26−1198)的衍射峰完全 

吻合，说明  800  ℃下烧结  18  h  得到的是单一物相 
Li4Ti5O12。在 900℃保温 18 h的样品又开始出现金红 

石型衍射峰，且比  700  ℃时的更尖锐，可能是因为 
Li4Ti5O12 高温下分解所致。由图 2 可以得出，合成单 

一物相尖晶石 Li4Ti5O12 的最佳烧结温度为 800℃。 

图 2  不同温度下合成样品的 XRD谱 

Fig.2  XRD  patterns  of  samples  calcinated  at  different 

temperatures 

图 3所示为在不同温度(700、800、900℃)下烧结 
18  h 后所制备的样品的 SEM 像。由图 3 可见，前驱 

体经球磨后在不同温度下烧结所得产品粒径基本为纳 

米级，但存在一定的团聚现象。比较图 3(a)、(b)和(c) 
可知，随着烧结温度的增加，颗粒逐渐变大且团聚现 

象增加，其中，800℃烧结的样品(见图 3(b))与 700℃ 

的样品(见图 3(a))相比，虽然颗粒有所长大， 但是其分 

散性比 700 ℃时样品的分散性好。为了比较各样品颗 

粒群的粒度分布情况，采用激光粒度分析仪测试样品 

的粒度分布，其结果列于表 1。由表 1 可知，在不同 

温度下烧结所得样品的一次粒子都为纳米级颗粒，平 

均粒径分别为  D700  ℃ =8.59 µm，  D800  ℃ =5.93 µm， 
D900 ℃ =13.14 µm，即随着温度的升高，粒径呈先减小
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图 3  不同温度下所制备样品的 SEM像 

Fig.3  SEM  images  of  samples  prepared  at  different 

temperatures: (a) 700℃; (b) 800℃; (c) 900℃ 

表 1  不同温度下所制备样品的粒度分布 

Table  1  Distributions  of  granularity  for  samples  calcined  at 

different temperatures in air 

t/℃  D10/µm  D50/µm  D90/µm  Dmean/µm 

700  0.34  3.52  25.84  8.59 

800  0.25  1.55  19.31  5.93 

900  0.53  5.21  35.52  13.14 

D10: Diameter at 10%; D50: Diameter at 50%; D90: Diameter at 
90%; Dmean: Mean diameter. 

后增大的趋势。总体来看，在 800 ℃下烧结合成的样 

品颗粒较小、团聚较少，这使电极反应界面增大，有 

利于 Li + 的迁移， 从而有利于提高材料的实际容量和减 

少电极极化。 

2.3  电化学性能测试 
2.3.1  充放电性能测试 

图 4所示为在 500 ℃预烧 5 h 后再经 800 ℃烧结 
18  h所得样品的前 3次充放电曲线(充放电倍率为 0.2 
C)。由图 4可见，在 800 ℃烧结合成样品在 1.5 V左 

右存在非常平坦的充放电平台，平台放电容量大于总 

放电容量的 85%，首次放电比容量为 186.87 mA∙h/g， 

第 2次与第 3次比容量都为 175.11 mA∙h/g，超过了理 

论容量(175 mA∙h/g)。原因可能有：溶剂的不可逆还原 

分解、较小的样品颗粒粒径缩减了 Li + 嵌入−脱出的扩 

散距离等 [5, 8, 20−22] 。 经过 2次循环后有大约 13%的不可 

逆容量，这可能是因为在电极表面形成的 SEI 膜和电 

解液发生了部分分解，如痕量水的还原，对于具有高 

比表面积以及新制备的电极来说，在第 1 个循环过程 

中，这种趋势更加明显 [22] 。 

图 4  800 ℃下合成的 Li4Ti5O12 样品在 0.2 C倍率时前 3次 

充放电曲线 

Fig.4  Initial  three  charge­discharge  curves  of  Li4Ti5O12 

prepared at 800℃ and discharge rate of 0.2 C 

2.3.2  倍率性能测试 

图 5 所示为在不同温度下制备的 Li4Ti5O12 在 0.2 
C 倍率的充放电循环曲线。由图 5 可看出，除了首次 

容量衰减比较明显外，Li4Ti5O12 样品表现出非常高的 

容量保持率。700、800和 900℃首次放电比容量分别 

为 187.25、186.87和 172.76 mA∙h/g；第 2次放电容量 

分别为 159.88、175.11和 133.34 mA∙h/g；首次衰减率
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分别为 14.61%、6.29%和 22.81%。经过 30 次循环后 

分别保持在 142.23、160.66和 111.45 mA∙h/g。显然， 

在 800 ℃下烧结制备的 Li4Ti5O12 的循环性能较好，比 

容量保持率最高。 

图 6所示为 800℃制备的 Li4Ti5O12 样品在不同倍 

率下的循环曲线。由图 6 可看出，在 0.5  C 倍率下， 

样品的首次放电比容量为 184.32  mA∙h/g，循环 50次 

后为 155.62 mA∙h/g，除了前 3次衰减较大外，其后表 

现出良好的容量保持率；当倍率增大到 1.0  C 时，其 

放电比容量降至 137.76  mA∙h/g，循环 50次后保持在 
133.12 mA∙h/g；当倍率继续增大至 2.0  C时，放电容 

量降至 125.08 mA∙h/g，50次后仍有 112.43 mA∙h/g。 

图 5  在不同温度下制备的 Li4Ti5O12 在 0.2 C倍率时的循环 

曲线 

Fig.5  Cycling  performance  curves  of  Li4Ti5O12  prepared  at 

different temperatures and discharge rate of 0.2 C 

图 6  Li4Ti5O12 在不同倍率下的循环特性 

Fig.6  Cycling  performance  of  Li4Ti5O12  at  different  current 

rates 

由此可见，以乳酸为配位剂，采用溶胶−凝胶法制备 

的 Li4Ti5O12 样品与以醋 酸 [11] 、 三乙醇胺 [12] 及柠檬酸 
[13,18] 等为配位剂用溶胶−凝胶合成的  Li4Ti5O12 样品一 

样，具有很好的循环稳定性和良好倍率性能。 
2.3.3  循环伏安测试 

图 7所示为 Li/Li4Ti5O12 电池在 0.2 C倍率下循环 
3次静置 12 h后的循环伏安曲线。 电压范围为 1.0～3.0 
V，扫描速度为 0.5  mV/s。从图 7 可以看出，在 1.42 
和  1.80  V  附近有一对很明显的氧化−还原峰，即 
Li4Ti5O12 中的  Ti 4+ /Ti 3+ 的氧化还原反应，氧化还原电 

位差∆V=0.38 V， 表明其是一个准可逆电极反应。 其中， 
1.42 V的氧化峰对应放电过程， 即锂离子的嵌入过程； 
1.80 V的还原峰对应充电过程， 即锂离子的脱出过程。 

锂离子在 Li4Ti5O12 样品中脱嵌过程可表示为 

Li4Ti5O12+3Li + +3e  Li7Ti5O12, φ=1.50  V  (11) 

图  7  Li/  Li4Ti5O12 在扫描速度为  0.5  mV/s 时的循环伏安 

曲线 

Fig.7  Cyclic voltammogram of Li/Li4Ti5O12  at  scanning rate 

of 0.5 mV/s 

3  结论 

1)  以乳酸为配位剂，用溶胶−凝胶法合成了粒径 

分布均匀， 具有尖晶石结构 Li4Ti5O12 样品。 且在 500℃ 

保温 5 h再在 800℃烧结 18 h得到的样品性能最好， 

其粒子分布均匀、放电比容量高及容量保持率高。 
2) 在 0.2 C下充放电测试，样品首次放电容量为 

186.87 mA∙h/g，循环 30次后保持在 160.66 mA∙h/g。 

在 0.5、1.0及 2.0 C倍率下循环 50次后比容量保持率 

较高，0.5 C的首次容量为 184.32 mA∙h/g，循环 50次
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后为 155.62 mA∙h/g；当倍率增大到 1.0 C时，首次容 

量为  137.76  mA∙h/g，循环  50  次后保持在  133.12 
mA∙h/g；当倍率继续增大至  2.0  C 时，放电容量为 
125.08 mA∙h/g，50次后仍有 112.43 mA∙h/g。 

3) 由 Li/Li4Ti5O12 电池在电压范围为 1.0~3.0 V扫 

描速度为  0.5  mV/s 下测试的循环伏安曲线可知：在 
1.50 V附近有一对很明显的氧化−还原峰，其氧化−还 

原电位差∆V =0.38 V，表明其是一个准可逆电极反应。 
4)  以乳酸为配位剂用溶胶−凝胶法制备的 

Li4Ti5O12 样品的形貌好、 充放电效率高和循环性能好， 

是一种优良的锂离子电池负极材料。 
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