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高低温循环对 EW94 镁合金组织与力学性能的影响 
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摘 要：研究高低温循环热处理对 EW94合金挤压−T6态板材组织与力学性能的影响。结果表明：在(−196℃, 12 
h)+(RT, 12 h)制度下，循环热处理对合金的力学性能无明显影响；经(−196 ℃, 12 h)+(≤200 ℃, 12 h)循环热处理 
N(N≤15)次后，样品抗拉强度有所提高；经(−196℃, 12 h)+(200 ℃, 12 h)循环 4次后，样品抗拉强度达到峰值， 

为 413 MPa；经(−196℃, 12 h)+(250℃, 12 h)循环处理后，样品抗拉强度略有下降，伸长率略有提高；而经(−196 

℃, 12 h)+(300℃, 12 h)循环处理后，样品抗拉强度,急剧下降至 307 MPa，但伸长率由 2.8%提高到 5.6%；随循环 

次数的增加，合金力学性能基本保持稳定。合金在高低温循环过程中的相变是影响其力学性能的主要因素。 

关键词：高低温循环；时效；析出相；断裂；伸长率 

中图分类号：TG 146.2  文献标志码：A 

Effects of high­low temperature cycle on microstructures and 
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Abstract: The effects of high­low temperature cycle on microstructures and mechanical properties of EW94 alloy with 
extruded­T6 temper were investigated. The results indicate that there is no effect on the mechanical properties when the 
aged alloy is held at −196 ℃ and ambient temperature. There is some increment in ultimate strength of the alloy when it 
is treated by (−196 ℃, 12 h)+(≤200 ℃, 12 h) regime for N(N≤15) times, the maximum ultimate strength of 413 MPa is 
derived when the alloy was  treated by (−196 ℃, 12 h)+(200 ℃, 12 h) for 4  times. There was  some decrease in ultimate 
strength but some increment in elongation when treated by (−196℃, 12 h)+(250℃, 12 h). However, the ultimate strength 
abruptly decreases to 307 MPa and the elongation increases to 5.6% when the samples are treated by (−196℃, 12 h)+(300 ℃, 
12 h), and the mechanical properties are stable at this level as the number of cycles increases. The phase transformation 
during the heat­treatment at alternate temperature is the key factor of the variation in mechanical properties. 
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镁−稀土合金由于具有优异的室温及高温力学性 

能而在航空航天领域得到了广泛的应用 [1−4] 。 该系合金 

为典型的时效强化型合金，时效强化被认为是其主要 

的强化机制 [5] 。近年来，大量研究人员对该系合金的 
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析出行为进行了研究，自从 NIE和MUDDLE [6−7] 首次 

在 WE54 合金中发现 β1 相以来，大多数镁−稀土合金 

的时效析出序列被确定为是 SSSS→β′′→β′→β1→β [8−11] 。 
β′′相通常形成于时效热处理的早期，为 DO19 结构，在 

} 0 2 11 {  或  } 0 1 10 {  面上析出 [12] ；β′相通常存在于峰值时 

效状态的样品中，是该系合金的主要强化相，具有 
BCO结构(a =0.64 nm, b =2.22 nm, c =0.52 nm)。随着 

时效时间的延长，β′相转变为与基体非共格的 β1 相， 

同时伴随着合金力学性能的下降，β1 相在 β′相与基体 

的界面上形核，β1 相为 FCC结构(a = 0.74 nm)；随着 

时效时间的进一步延长，β1 相将原位转变为平衡相 β， 
β相也为一种具有 FCC结构(a =2.2 nm)且与基体不共 

格的相。上述对镁−稀土合金时效行为的研究，为探 

明时效热处理对合金力学性能的影响规律及制定合理 

的时效制度奠定了理论基础。 

当前对  Mg­Gd­Y­Zr 合金析出行为的研究均是针 

对未经时效处理的固溶态样品进行的，但航天器构件 

所用材料通常为经时效处理的产品，且构件是在复杂 

的高低温交变温度场中服役，在外界温度场的作用下 

合金中已有强化相的类型及分布等有可能将发生改 

变。因此，研究服役过程中合金的相转变规律及其对 

合金力学性能的影响具有重要意义。本文作者通过模 

拟航天器服役的温度条件，研究经  T6 处理的  EW94 
合金挤压材在交变温度场中的组织演变规律及其对合 

金力学性能的影响，为该合金的工程应用提供依据。 

1  实验 

用于高低温循环热处理的试验料为经  T6 处理的 
EW94 合金挤压材。图 1 所示为高低温循环试验的过 

程。首先将合金试样用丝线吊入液氮罐内，保温 12 h， 

然后将丝线取下，将样品移入不同温度(室温、150、 
200、250和 300 ℃)的加热炉内，保温 12 h 后取出并 

淬火，再用丝线将样品吊入液氮罐内保持 12 h，样品 

转移时间小于  5  min，如此处理一次为一个循环。然 

后对循环不同次数的样品取样进行力学性能测试及微 

观组织分析。 

样品的硬度测试在HV−10B型小负荷维氏硬度仪 

上进行，加载力为 30 N，保持时间为 30 s，文中所提 

供硬度值为 9 个测试点的统计结果。室温拉伸试样为 

板状样，其平行长度部分的宽度约为 10 mm，厚度约 

为  2  mm，标距长度约为  25  mm。室温拉伸实验在 
CSS−44100型万能电子拉伸机上进行，夹头移动速率 

为 1 mm/min。拉伸后的断口形貌观察在 Quanta−200 

图 1  高低温循环热处理示意图 

Fig.1  Schematic  diagram  showing  high­low  temperature 

cycle treatment 

型扫描电镜上进行。用于透射电镜观察的试样在砂纸 

上缓慢预先减薄至 80 μm左右， 然后冲成直径为 3 mm 
的小圆片，再用 GATAN DIMPLE GRINDER 656凹坑 

仪和 GATAN PIPS 691离子减薄仪进一步减薄至满足 

要求。TEM观察在 Tecnai G2 20型透射电镜上进行。 

2  结果与分析 

2.1  T6态样品的组织与性能 

挤压材经固溶处理后， 在 215℃条件下进行时效， 

选择经峰值时效处理的状态作为循环试验的初始态。 

对其进行室温拉伸试验，测得其抗拉强度  σb=386 
MPa，伸长率 δ=2.8%。该状态样品的 TEM 像如图 2 
所示。由图 2 可见，样品中形成了大量细小弥散的析 

出相；SAED结果表明，该时效析出相为Mg­Gd­Y­Zr 
合金峰值时效状态中常有的 β′相 [9−10] ，其与基体的 

位向关系为 α β  ] 0001 //[ ] 001 [ ′ ， α β  ) 0 1 1 2 //( ) 100 ( ′ 。该 

强化相在  } 0 2 11 {  面上析出，能有效阻碍基面滑移，使 

合金具有较高的强度。 

2.2  高低温循环对合金力学性能的影响 

图 3 所示为循环处理参数及次数对合金硬度的影 

响规律。 从图3中可以看出， 合金经(−196℃, 12 h)+(RT, 
12 h)循环处理后，随循环次数的增加，合金硬度始终 

维持在初始态水平，说明合金的力学性能在该温度范 

围内非常稳定。 当合金样品经(−196℃, 12 h)+ (150℃, 
12 h)循环处理后，随循环次数的增加，合金样品的硬 

度缓慢上升，说明循环保温使样品产生了进一步的强 

化，RIONTINO等 [13] 在研究WE43合金的双级时效行 

为时也发现了类似现象。合金经(−196 ℃,  12 h)+(200 
℃,  12  h)循环处理后，硬度变化趋势与(−196 ℃,  12 
h)+(150℃, 12 h)循环热处理的情况类似，但硬度增长



第 21 卷第 3 期 唐昌平，等：高低温循环对 EW94 镁合金组织与性能的影响  507 

图 2  挤压材经 T6处理后的 TEM像及 SAED结果 

Fig.2  TEM image and SAED pattern of extrusion sheet with 
T6 temper: (a) TEM image; (b) SAED pattern (B∥  ] 3 1 2 1 [  ) 

图 3  样品硬度随高低温循环制度及循环次数的变化曲线 

Fig.3  Hardness  evolution as  function  of  regime and  number 

of high­low temperature cycle 

更为明显，且增长在循环 4 次后达到峰值，随后出现 

轻微的降低。与前述几种情况不同，当经过(−196 ℃, 
12 h)+(250℃, 12 h)循环 1次后，合金硬度轻微下降； 

当循环 4 次后，样品的硬度已下降到较低的水平，随 

着循环次数的继续增加， 硬度下降不明显， 稳定在 115 
HV左右。当经(−196℃, 12 h)+(300℃, 12 h)循环 1次 

后，样品的硬度便急剧下降至 95 HV，随后随着循环 

次数的增加，硬度始终维持在这一水平。 

合金经不同热循环制度处理后的室温拉伸结果如 

图 4 所示。从图 4 中可以看出，合金经(−196 ℃,  12 
h)+(RT, 12 h)循环处理后， 与硬度曲线所反映的趋势一 

致，抗拉强度和伸长率均无明显变化，始终维持在初 

始态水平。经(−196 ℃, 12 h)+(150 ℃, 12 h)循环处理 

后，合金的抗拉强度较初始态有轻微增长。合金经 
(−196℃, 12 h)+(200℃, 12 h)循环处理后， 抗拉强度先 

增加，后减小，在循环 4次时达到峰值，为 413 MPa， 

较初始态的抗拉强度增加了 27 MPa； 随后随着循环次 

数的增加， 合金的抗拉强度基本维持在这一较高水平。 

合金经(−196℃, 12 h)+(250℃, 12 h)循环处理 1次后， 

抗拉强度仍然保持在初始态水平，但随着循环次数的 

增加，合金的抗拉强度开始下降，循环 15次后，下降 

约  21  MPa。与前述几种高低温循环制度明显不同的 

是，合金经(−196℃, 12 h)+(300℃, 12 h)循环 1次后， 

抗拉强度便急剧下降约 80 MPa，而伸长率显著提高， 

且随着循环次数的继续增加， 抗拉强度不再明显减小， 

始终维持在 300 MPa左右， 伸长率也维持在较高水平。 

综上所述，由 EW94合金力学性能的变化规律可 

知：合金力学性能的变化应归因于热循环过程中的高 

温保温过程。当热循环高温段的温度低于 200 ℃时， 

合金的力学性能可较长时间维持稳定，且强度有所提 

高；当热循环高温段温度为 250 ℃时，在低的循环次 

数(N=1)下， 合金的力学性能能够基本维持在初始态水 

平，但随循环次数的增加，亦即高温段保温累积时间 

的延长，合金的强度有所下降；当热循环高温段温度 

为 300 ℃时，即使循环次数仅为 1次，也将导致合金 

的强度显著下降而伸长率升高，但随后进入另一水平 

的稳定期。 

3  讨论 

3.1  热循环对合金强度的影响机理 

对时效强化型 EW94合金而言，时效析出相的类 

型、数量和分布等是影响合金力学性能的主要因素。 

因此，上述热循环对合金力学性能的影响主要是通过 

影响合金中时效析出相的类型和数量等实现的。 

由于 Mg­Gd­Y­Zr 合金时效析出相的成分与基体 

的成分不同 [14] ，因此该合金发生相变的过程，实际上 

是一个  Gd、Y、Nd 等稀土原子在合金基体中扩散的



中国有色金属学报  2011 年 3 月 508 

过程。相转变能否发生以及相转变的快慢也主要受控 

于稀土原子在基体中的扩散系数。原子在基体中的扩 

散系数可表示为 [15] 

) exp( 0  RT 
Q D D − =  (1) 

式中：  0 D  为系数；R 为气体常数；T 为绝对温度；Q 
为激活能。激活能反映了相变势垒的高低，且与相变 

温度有关，相变温度越高，激活能越小；另外，原子 

尺寸差也是影响扩散系数的一个重要因素。稀土原子 

Gd、Y、Nd与Mg原子的半径差分别为 13%、13%和 
14% [3] 。因此，这些与镁原子尺寸差大的稀土原子在 

镁基体中扩散需克服的阻力大， 激活能值Q相应较高。 

由于高低温循环试验前合金为  T6 态，因此可以 

认为基体中溶质原子浓度处在该合金在 215 ℃对应的 

最大固溶度水平或略高于该温度下的最大固溶度。当 

在−196℃和室温条件下进行热循环时， 相对于循环温 

度，基体仍处于过饱和状态，固溶体具有自发分解的 

趋势，但由于温度过低，原子热振动能量低，激活能 

高， 原子扩散系数极低， 故在(−196℃, 12 h)+(RT, 12 h) 

图 4 不同热循环制度及循环次数对合金力学性能 

的影响 

Fig.4  Effects  of  regime  and  number  of  high­low 

temperature  cycle  on  mechanical  properties:  (a) 

Treated  by  (−196 ℃,  12  h)+(ambient  temperature, 

12 h); (b) Treated  by  (−196 ℃,  12 h)+(150 ℃, 12 

h); (c) Treated by  (−196 ℃, 12 h)+(200 ℃,  12 h); 

(d) Treated by  (−196 ℃,  12 h)+(250 ℃, 12 h); (e) 

Treated by (−196℃, 12 h)+(300℃, 12 h)
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制度下循环处理时，样品中无明显相变发生，导致力 

学性能稳定在初始态水平。 

当在(−196 ℃, 12 h)+(200 ℃, 12 h)制度下进行循 

环处理时，在 200 ℃保温过程中，由于温度较高，原 

子热振动能量也较高，已经能够突破发生相变需克服 

的能垒，扩散系数较−196 ℃和室温条件下的明显提 

高。初始态合金中已经存在的析出相将长大及朝着平 

衡相方向转变，降低合金的硬度和强度；又由于合金 

基体中溶质摩尔浓度在此温度下仍处于过饱和状态， 

在高温段保温的过程中将发生新相析出，导致合金硬 

度和抗拉强度升高。这两种作用相互竞争，最终导致 

样品硬度及强度先随循环次数的增加而增加，在循环 
4 次时达到峰值，随后缓慢下降。图 5 所示为样品经 
(−196℃, 12 h)+(200℃, 12 h)循环 4次后的 TEM像及 
SAED 结果。从图  5 中可以看出，β′相较初始态合金 

有一定的长大，另外，从 SAED结果中可以发现，除 

图 5  合金经(−196 ℃,  12  h)+(200 ℃,  12  h)循环 4次后的 

TEM像及 SAED结果 

Fig.5  TEM  image  and  SAED  pattern  of  sample  treated  by 

(−196 ℃, 12 h)+(300 ℃, 12 h) regime for four times: (a) TEM 
image; (b) SAED pattern(B∥  ] 2 1 01 [  ) 

β ′相的衍射斑点外，还存在 β′′相的衍射斑点，说明在 

热循环过程中发生了  β′′相的析出，进一步强化了合 

金。在(−196℃, 12 h)+(150℃, 12 h)制度下热循环时， 

合金组织的情况与在(−196 ℃, 12 h)+(200 ℃, 12 h)制 

度下进行循环时的类似，但由于合金在 150 ℃的扩散 

系数比在 200 ℃的小，初始态中原有析出相 β′粗化及 

向平衡相方向转变的速度和基体中新相析出的速度均 

较在 200 ℃条件下的更缓慢。因此，样品硬度及抗拉 

强度随循环次数的增加一直呈增长趋势。 

合金样品在(−196 ℃, 12 h)+(250 ℃, 12 h)制度下 

进行热循环时，基体中的溶质摩尔浓度在该温度下与 

其最大固溶度相当，将不会发生新相的析出，而仅仅 

发生原有析出相粗化及向平衡相转变的过程。合金样 

品在该制度下循环 1 次后，合金力学性能基本维持在 

初始态水平，说明该过程中在 250 ℃保温时，原有析 

出相粗化及向平衡相转变的程度不大；当循环次数达 

到 4 次时，合金硬度和抗拉强度出现较明显下降，说 

明原有析出相已经发生了明显改变。 

在(−196 ℃, 12 h)+(300 ℃, 12 h)制度下进行热循 

环时，由于保温温度高于合金初始态的时效温度，合 

金中溶质的摩尔分数低于其在该温度下的最大固溶 

度，因此合金中同样不会出现新相形核  (见图 6(a))； 

另一方面，合金样品在 300 ℃条件下保温时，原子在 

基体中的扩散系数显著增大，初始态合金中析出相转 

变为平衡相的相转变速度明显加快(见图 6(a))， 也将导 

致合金硬度及抗拉强度显著降低。因此，在该制度下 

循环 1次后， 合金样品的硬度及抗拉强度便显著下降。 

3.2  热循环对合金伸长率的影响机理 

图 6(a)所示为合金经(−196℃, 12 h)+(300℃, 12 h) 
循环 1次后晶粒内的 TEM像以及相应的 SAED结果。 

从图  6(a)中可以看出，合金中析出相的尺寸已明显变 

大，且分布稀疏。其 SAED结果表明，这些粗大的析 

出相为平衡相  β，其晶体结构为  FCC，晶格常数 
a=2.2  nm，与基体的位向关系为  α ) 00 1 1 //( ) 12 1 ( β 和 

[110]β∥[0001]α。 图 6(b)所示为样品晶界处的 TEM像。 

从图 6(b)中可以看出，大量粗大析出相在晶界上连续 

析出，导致晶界附近出现贫溶质区，形成宽度约 3 μm 
的无沉淀析出带。 

图  7(a)所示为合金初始态样品拉伸断口的  SEM 
像。从图  7(a)中可以看出，断口呈明显的穿晶断裂特 

征。这是因为镁为密排六方金属，在室温下，通常只 

有{0001}〈  0 2 11 〉滑移和孪生能够启动，而在初始态合 

金中，存在着大量弥散分布的 β′相(见图 2)，该析出相 

为盘状，呈  120°三叉形分布于  ) 0 2 11 (  面上 [5] 。根据
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图 6  合金经(−196 ℃,  12  h)+(300 ℃,  12  h)循环 1次后的 

TEM像 

Fig.  6  TEM  images  of  sample  treated  by  (−196  ℃,  12 

h)+(300 ℃, 12 h) regime for one time: (a) TEM image of inter 

crystalline; (b) TEM image of grain boundaries 

Orowan 机制，这种呈  120°三叉形弥散分布的  β′相能 

有效阻碍位错的滑移，显著提高基体基面滑移的临界 

剪切应力 [16] ，强化效果明显，但严重降低其塑性变形 

能力。因此，初始态合金具有较高的强度而极低的伸 

长率。 图 7(b)和(c)所示为经过(−196 ℃， 12 h)+(300℃， 
12 h)热循环 1次后样品断口的 SEM像。 从图 7(b)和(c) 
中可以看出，样品的断裂方式主要为沿晶断裂，且晶 

界上凹凸不平。 

晶内稀疏分布的平衡相 β由于数量少，与基体不 

共格，对位错的阻碍作用有限。因此，经此循环制度 

处理后，合金的强度下降明显(降低约  80  MPa)。经 
(−196℃，12 h)+(300℃，12 h)循环处理后，样品的伸 

长率的提高机理如图 8 所示。从图 8 中可以看出，在 

外力作用下，基体中粗大析出相之间的无沉淀相区域 

由于位错运动所受阻碍较小，因此能发生较大程度的 

变形。同理，晶界周围宽阔的无沉淀析出带也较容易 

发生变形，且无沉淀析出带能够在一定程度上释放晶 

界处的应力集中，协调晶粒间的变形，从而获得较高 

的伸长率。最后，变形过程中产生的位错塞积在晶界 

处，在晶界上富稀土粒子和粗大析出相与基体的界面 

处产生裂纹，并沿晶界扩展，导致断裂。因此，在断 

口的晶界上呈现出凹凸不平的形貌(见图 7(c))。 

图 7  T6态样品及经(−196 ℃，12 h)+(300 ℃，12 h)循环 1 

次后的断口 SEM像 

Fig.7  SEM  images  of  T6  treated  sample  and  sample  treated 

by  (−196 ℃,  12  h)+(300 ℃,  12  h)  regime  for  one  time:  (a) 

Extruded­T6 temper; (b) Treated by (−196 ℃, 12 h)+(300 ℃, 

12 h); (c) Magnified view of Fig. (b)
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图 8  样品经(−196 ℃, 12 h)+(300 ℃, 12 h)循环处理后的断 

裂过程示意图 

Fig.8  Schematic  diagram  showing  breaking  process  of 

samples treated by (−196℃, 12 h)+(300℃, 12 h) regime 

4  结论 

1)EW94合金挤压T6态板材中强化相在 200℃以 

下热稳定性高。 经(−196 ℃, 12 h)+(≤200℃, 12 h)热循 

环 N(N≤15)次后，合金的力学性能稳定；经(−196℃, 

12 h)+(250 ℃, 12 h)热循环 N(N≤15)次后，强度略有 

下降，伸长率略有提高，经(−196℃, 12 h)+(300℃, 12 
h)热循环 N(N≤15)次后，合金抗拉强度能较长时间稳 

定在 300 MPa平台上，且伸长率较 T6态的有所提高。 
2)挤压材经T6处理形成的强化相 β′在 250℃以下 

的环境中相转变速度较慢，在 300 ℃以上环境中相转 

变速度显著加快。 
3)经(−196℃, 12 h)+(300℃, 12 h)热循环过程后， 

合金析出相数量的减少及晶界处宽阔的无沉淀析出带 

的形成能明显提高合金的伸长率。 
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