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Improvements of intergranular corrosion resistance and
mechanical properties of brass H68

JIANG Ying, WANG Wei-guo, GUO Hong

(School of Mechanical Engineering, Shandong University of Technology, Zibo 255049, China)

Abstract: A sample of brass H68 with average grain size of 150 pm was subjected to a GBE processing, a grain boundary
character distribution (GBCD) containing special boundary percentage of 76% and an average grain size of 30 pm was
obtained. The results of tension and corrosion test indicate that GBE processing can not only obviously improve the
ultimate strength from its initial value 234 MPa to 297 MPa, but also drastically increase the intergranular corrosion
resistance. Compared with the conventionally recrystallized sample with the same average grain size, the ultimate
strength of GBE processed sample drops to some extent, but its ductility increases by 17%. The former exhibits a severe
intergranular corrosion cracking, while the later appears to be nearly immune to intergranular corrosion attacking. A great
deal of special grain boundaries (especially the X3 boundaries ) formed in the GBE processed sample and their
effective interruption to the connectivity of general high angle boundary networks accounts for primarily its excellent
anti-corrosion behavior were discussed further. Although the special grain boundaries demonstrate their effective
hardening, it is obviously weaker than that of general high angle boundaries. This might be attributed to the higher degree
of ordering in the special boundaries.
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Fig.1 Schematic diagram of brass H68 specimen for tensile

test (mm)
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2 GBE OIM
Fig.2 OIM-reconstructed grain boundaries of initial((a), (b)), traditional recrystallization((c), (d)) and GBE processing((e), (f))
samples (Thin grey lines denote SBs, black lines denote HABs in Figs.2(a), (¢) and (¢))
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Fig.3 Inverse pole figures of initial(a), traditional recrystallization(b) and GBE processing(c) samples

4 GBE NaOH+NH,CI
Fig.4 Cross-section morphologies of initial(a), traditional recrystallization(b) and GBE processing(c) samples corroded in
NaOH+NH,4CI solution
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Table 1 Mechanical properties of brass H68 sample
Sample Crystallite r(llmensu)n/ oyMPa /%
(fen=T76%) -
Initial 150 234 62
Traditif)na? 30 01 53
GBE recrystallization
GBE processing 30 297 70
(001)//TD
23 GBE
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5 1 GBE )
234 MPa 297 MPa
GBE - (Hall-Petch)
17% O’b:O'0+Kd7]/2( 09
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Fig.7 Magnified maps of local zone 4 in Fig.2(e) (Thin grey

lines denote SBs including X3, 29, X27 and other low

2’ CSL boundaries, black lines denote HABs)
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Fig.6  Tensile fracture morphologies of H68 samples
processed in different ways: (a) Initial sample; (b) Traditional GBE
recrystallization sample; (c) GBE processing sample 17%
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