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Deformation twinning characteristic of mechanically alloyed
Cu-Nb alloy powders
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Abstract: The microstructure evolution and deformation twinning characteristics of nanocrystalline Cu-10%Nb alloy
during mechanical alloying (MA) were investigated by microhardness measurements, transmission electron microscopy
(TEM) and high resolution TEM (HRTEM) observation. A local stress concentration model was proposed to explain the
deformation twin nucleation mechanism of Cu-Nb alloy. The results show that the Vickers microhardness of the powders
increases gradually with the increase of milling time, and reaches 4.8 GPa after 120 h milling. The main structure of the
powders is the dislocation cells in the initial milling. After 50 h milling, the average Cu grain size decreases to about 50
nm, and nano-deformation twins begin to form in some regions. With the continued increase of the milling time, the
number of twin increases, and the twin boundary strengthening enhances accordingly. Due to the deformation twinning
will contribute to further refine the nano-grains, after 120 h milling, the nano-crystalline size decreases to below 20 nm.
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Fig.2 TEM and HRTEM images showing change in microstructure of Cu-10%Nb alloy with respect to milling time: (a) TEM
image, 15 h; (b) TEM image, 50 h; (c¢) HRTEM image of select area mark in (b); (d) TEM image, 100 h; () TEM image, 120 h; (f)

HRTEM image of select area mark in (e)
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