文章编号:1004-0609(2011)02-0356-08

## 晶体取向对镍基单晶合金蠕变行为的影响

田素贵<sup>1</sup>, 于莉丽<sup>1</sup>, 张 殊<sup>1</sup>, 于慧臣<sup>2</sup>, 钱本江<sup>1</sup>, 肖 丽<sup>1</sup>

(1. 沈阳工业大学 材料科学与工程学院,沈阳 110870;
 2. 北京航空材料研究院,北京 100095)

摘 要:通过蠕变曲线测定及组织形貌观察,研究[001]、[011]取向镍基单晶合金在蠕变期间的组织演化及变形特征。结果表明:经完全热处理后,[001]和[011]取向合金中立方 y'相均以共格方式镶嵌在 y 基体相中,并沿 (100)取向规则排列。蠕变期间,[001]取向合金中 y'相沿垂直于应力轴方向形成 N-型筏状组织,而[011]取向合金中 y'相沿 [001]取向形成纤维状筏形组织,且在(100)晶面的筏状 y'相与施加应力轴方向呈 45°角排列,其中,立方 y'相不同 晶面中扩张晶格的法线方向是筏状 y'相的生长方向。在试验温度和应力范围内,与[011]取向合金相比,[001]取向 合金具有较好的蠕变抗力。在高温蠕变后期,两取向合金中的筏状 y'相均发生粗化和扭折,其中,[001]取向合金 在蠕变后期的变形机制是位错剪切 y'相,而[011]取向合金的变形特征主要是形变位错在基体通道中滑移。 关键词:单晶镍基合金;晶体取向;蠕变;组织演化;变形特征 中图分类号:TG111.2

# Influence of crystal orientations on creep behaviors of single crystal nickel-based superalloy

TIAN Su-gui<sup>1</sup>, YU Li-li<sup>1</sup>, ZHANG Shu<sup>1</sup>, YU Hui-chen<sup>2</sup>, QIAN Ben-jiang<sup>1</sup>, XIAO Li<sup>1</sup>

School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
 Beijing Institute of Aeronautical Materials, Beijing 100095, China)

**Abstract:** By means of the measurement of creep curves and microstructure observation, the microstructure evolution and creep behaviors of [001] and [011] oriented single crystal nickel-base superalloy during tensile creep were investigated. The results show that, after fully heat treated, the microstructure of [001] and [011] oriented single crystal nickel-base superalloy consists of the cubical  $\gamma'$  phase embedded coherent in the  $\gamma$  matrix and arranged regularly along the  $\langle 100 \rangle$  orientations. During creep, the cubical  $\gamma'$  phase in [001] orientation alloy is transformed into the N-type rafted structure along the direction vertical to the applied stress axis. However, the cubical  $\gamma'$  phase in [011] orientation of the rafted  $\gamma'$  phase is 45° relative to the direction of the applied stress axis on (100) crystal plane. Thereinto, the normal of the expanding lattice on the different crystal planes of the cubical  $\gamma'$  phase is thought to be the growth direction of the rafted phase. In the ranges of the applied stresses and temperatures, compared to [011] orientation alloy, [001] orientation alloy has a better creep resistance and a longer creep life. In the later period of high temperature creep, the rafted  $\gamma'$  phase and slipping within the  $\gamma$  matrix channels are thought to be the deformation mechanisms of [001] and [011] orientations alloys, respectively.

Key words: single crystal nickel-base superalloy; crystal orientation; creep; microstructure evolution; deformation features

基金项目:国家自然科学基金资助项目(50571070)

收稿日期:2010-03-23;修订日期:2010-10-15

通信作者:田素贵,教授,博士;电话:024-25494089;传真:024-25496768;E-mail:tiansugui2003@163.com

镍基单晶合金的重要特点是其力学及蠕变行为与 晶体取向密切相关,不同取向的同成分单晶合金具有 不同的屈服强度和蠕变抗力,其差别可达数倍、甚至 数十倍<sup>[1-4]</sup>。由于[001]取向单晶合金具有制备工艺简 单、高温力学及蠕变性能优良等特点,已广泛用于制 作航空发动机的热端叶片部件<sup>[5-6]</sup>,并可大大提高航空 发动机的工作效率<sup>[7-8]</sup>。尽管在单晶叶片制备中,对晶 体取向的偏差有严格要求<sup>[9]</sup>,但在实际生产中制备的 叶片部件与[001]取向仍存在一定程度的偏差,且其偏 差程度直接影响叶片部件的力学及蠕变性能。但取向 偏差影响合金力学及蠕变性能的程度并不清楚,因 此,需要了解镍基单晶合金力学及蠕变行为的各向异 性特征。

[001]取向镍基单晶合金在服役条件下的蠕变行 为已有文献报道<sup>[10-12]</sup>,但对[011]取向单晶合金蠕变行 为的研究较少,特别是[001]和[011]取向合金在蠕变期 间发生不同特征的组织演化,其各自合金在蠕变期间 的组织演化特征及对蠕变行为的影响规律仍不清楚。

据此,本文作者通过对[001]和[011]取向单晶合金 进行蠕变曲线测定及组织形貌观察,考察各自合金在 蠕变期间的演化规律,研究其组织演化对两取向单晶 合金蠕变行为的影响规律,试图为完善单晶合金的组 织演化规律及合金的进一步开发与应用提供理论依 据。

### 1 实验

采用选晶及籽晶法在高温度梯度真空定向凝固炉 中,将成分为 9.0Cr-5.0W-5.5Al-4.5Co-1.7Ti、其余为 Ni 的母合金制备成[001]和[011]取向的单晶合金试 棒,制备出[001]和[011]取向单晶合金的取向偏差分别 为 8°和 4°,在箱式电阻炉中将两取向的单晶合金试棒 进行完全热处理,所采用的热处理工艺为:(1 250 , 4 h, AC)+(870 , 32 h, AC)。

将完全热处理后的两取向单晶试棒分别沿特定晶 面切取板状拉伸蠕变试样,试样的横断面为 4.5 mm×2.5 mm,标距为 15.0 mm。板状蠕变试样经表面 机械研磨、抛光后,置入 GWT504 型高温持久/蠕变 试验机中,在不同温度和应力条件下进行单轴恒载拉 伸蠕变性能测试。在固定的时间间隔测定合金的应变 量,绘制蠕变曲线。蠕变前/后不同取向样品各晶面经 研磨及抛光后,在 SEM 下观察其组织形貌,考察不 同取向合金在蠕变期间的组织演化特征。并将蠕变断 裂后的试样制成 TEM 样品,进行微观形貌观察,观 察合金在蠕变期间 y'、y 两相的位错组态,探讨各自合 金在蠕变期间的变形机制。

## 2 结果与分析

#### 2.1 合金的蠕变特征

在(1 040 ,137 MPa)条件下,测定[001]/[011] 两取向合金的蠕变曲线,如图1所示。由图1可以看 出,[011]取向合金的初始应变较大,稳态期间的应变 速率较高,且蠕变寿命仅为73h;而[001]取向合金在 稳态蠕变期间具有较低的应变速率,蠕变250h仍处 于稳态蠕变阶段,表明[001]取向合金具有较好的蠕变 抗力。



图 1 在(1 040 , 137 MPa)条件下不同取向单晶合金的蠕 变曲线

**Fig.1** Creep curves of single crystal nickel-base superalloy with different orientations under applied stress of 137 MPa at 1 040

[001]取向单晶镍基合金在不同条件下测定的蠕 变曲线如图 2 所示。其中在 137 MPa、不同温度测定 的蠕变曲线如图 2(a)所示。由图 2 可以看出,合金在 1 040 具有较低的应变速率和较长的蠕变寿命,其稳 态蠕变期间的应变速率为每小时 0.009 214%,蠕变至 380 h 时合金仍然处于稳态阶段;随温度提高到 1 072

,合金在稳态蠕变期间的应变速率提高到每小时 0.023 971%,稳态蠕变期间持续的时间缩短到 93 h, 蠕变寿命为 115 h;随温度进一步提高到 1 080 ,合 金的蠕变寿命已降低到 98 h(见图 2(b))。结果表明, 当温度大于 1 070 时,[001]取向合金具有明显的温 度敏感性。





合金在1040 施加不同应力测定的蠕变曲线如 图2(b)所示。由图2(b)可看出,当施加160 MPa拉应 力时,合金具有较短的初始蠕变阶段,较长的稳态蠕 变阶段,稳态期间的应变速率为每小时0.009646%, 蠕变寿命为257h;随施加应力进一步提高到180 MPa,蠕变寿命大幅度降低到98h,表明当施加应力 大于160 MPa时,合金具有极强的施加应力敏感性。

在施加温度为 1 040~1 080 和应力为 137~ 180 MPa 时测定的蠕变曲线([011]取向合金的蠕变曲 线略去),测算出两取向合金在稳态蠕变期间的应变速 率,其应变速率与施加温度、应力的关系,如图 3 所 示。其中,合金在 137 MPa 不同温度范围内应变速率 与温度倒数之间的关系,如图 3(a)所示,由此,分别 计算出 [001] 和 [011] 取向合金的蠕变激活能为  $Q_{[001]}=469.56$  kJ/mol 和  $Q_{[011]}=396.54$  kJ/mol。在 1 040

稳态蠕变期间应变速率与施加应力的关系如图 3(b) 所示,由此计算出[001]和[011]取向单晶合金的应力 指数分别为 *n*<sub>[001]</sub>=4.77、*n*<sub>[011]</sub>=4.10。由此可以认为,



图 3 稳态期间的应变速率与应力和施加温度的关系 Fig.3 Relationship between strain rate and stress during steady state creep

在试验的温度和应力范围内,稳态蠕变期间两取向单 晶合金的变形机制主要由位错攀移控制。

#### 2.2 不同取向合金在蠕变期间的组织演化

[001]和[011]取向单晶合金经完全热处理后,均为 立方 y'相以共格方式镶嵌在 y 基体相中,如图 4 所示。 其中,[001]取向施加应力的方向如图 4(a)所示,可以 看出,y'相的平均尺寸约为 0.3 µm,基体通道的宽度 约为 50 nm,且沿 (100)方向规则排列。其中,y'相体 积分数约占 65%。图 4(b)所示为[011]取向合金在(100) 晶面的组织形貌。由图 4 可以看出,立方 y'相及基体 通道的宽度与[001]取向合金的完全相同,且在(100) 晶面立方 y'相的棱边与施加应力轴方向成 45°角,即立 方 y'相沿[001]和[010]取向规则排列,如图 4(b)右侧所 示。表明[011]取向单晶合金经完全热处理后,其组织 结构仍是立方 y'相沿 (100) 取向规则排列。

在(1 040 , 137 MPa)条件下, [001]取向单晶合 金经拉应力蠕变 40 h 后, 在(100)晶面的组织形貌如图



图 4 不同取向单晶合金经完全热处理后的显微组织

Fig.4 Microstructures of different orientations single crystal alloys after full heat treated: (a) [001] orientation; (b) [011] orientation

5 所示。由图 5 可以看出 <sup>γ</sup>/相已沿垂直于应力轴的[010] 方向连成筏状,并且筏状组织比较平直,其筏状 <sup>γ</sup>/相 的厚度尺寸均匀,约为 0.6 μm;而在(010)晶面观察, 合金中筏状 <sup>γ</sup>/相的形貌与图 5 相同,即筏状 <sup>γ</sup>/相仍与 [100]应力轴方向垂直(照片略去)。表明[001]取向合金 在高温蠕变期间,<sup>γ</sup>/相沿(001)晶面形成网状筏形组织, 且与文献[13]的结果相一致<sup>[13]</sup>。

在1040 ,137 MPa 条件下,[011]取向单晶合 金拉伸蠕变 40 h 后, y'相在不同晶面的形貌如图 6 所 示。图 6(a)所示为[011]取向单晶合金单胞施加拉应力 的示意图。其右侧为施加应力轴与[011]取向的偏差, 在(100)晶面合金中 y'相形成筏状形貌如图 6(b)所示, 可以看出,筏状 y'相的取向与应力轴方向成 45°角,即 y'相形成筏状的取向为[001];在(010)晶面,y'相形成 与(100)晶面平行、且沿[001]取向呈类似纤维状筏形组



图 5 [001]取向单晶合金经(1 040 , 137 MPa)蠕变 40 h 后在(100)晶面的形貌

**Fig.5** Morphology of [001] orientation single crystal nickel based superalloy after crept for 40 h under applied stress of 137 MPa at 1 040 on (100) crystal plane

织,如图 6(c)所示;根据图 6(b)和(c)的形貌可以判断: 在高温拉应力蠕变期间,[011]取向单晶合金中形成的 筏状 y'相具有纤维状特征,且纤维状 y'相的取向与[001] 取向平行。图 6(d)所示为 y'相在(011)晶面的组织形 貌。由图 6(d)可以看出,y'相沿平行于应力轴的[011] 取向相互连接形成筏状,并沿[011]方向有多处中断, 其筏形长度尺寸较短。如果认为[011]取向单晶合金中 的 y'相是沿[001]取向形成纤维状筏形组织,则当其沿 (011)晶面切取后,在该晶面的形貌为筏状 y'相沿[011] 取向呈断续的纤维状组织,且与图 6(d)的形貌完全相 同。由此可以得出结论:在拉伸蠕变期间,[011]取向 单晶合金中 y'相形成与[001]取向平行的纤维状筏形组 织,其 y 基体相连续填充在纤维状筏形 y'相之间,以 保证合金具有良好的塑性。

#### 2.3 蠕变不同时间的组织形貌

在(1040 ,160 MPa)条件下,[001]取向单晶合 金蠕变不同时间的形貌如图 7 所示,膜面的法线方向 为[100]取向。照片中黑色区域为  $\gamma$ '相,白色区域为  $\gamma$ 基体相。由图 7 可以看出,合金蠕变 2 h 后,立方  $\gamma$ ' 相已逐渐转变成与应力轴垂直的筏状组织,筏状  $\gamma$ '相 厚度的平均尺寸约为 0.3  $\mu$ m,如图 7(a)所示,但仍有 部分  $\gamma$ '相保持立方形结构,如图 7(a)中箭头所示。蠕 变 40 h 后, $\gamma$ '相的侧向通道已基本消失,形成了完善 的 N-型筏形结构,筏状  $\gamma$ '相和  $\gamma$ 基体相的尺寸分别增 加到 0.6  $\mu$ m 和 0.4  $\mu$ m,如图 7(b)所示。蠕变 257 h 断 裂后的  $\gamma$ '相筏形组织如图 7(c)所示。由图 7(c)可以看 到,筏形  $\gamma$ '相的厚度明显增加,且已粗化, $\gamma$ '相和  $\gamma$ 基体相的尺寸分别增加到 1  $\mu$ m 和 0.8  $\mu$ m,并在近断 口区域筏状  $\gamma$ '相发生扭折。



**Fig.6** Morphologies of [011] orientation superalloys after crept for 40 h under applied stress of 137 MPa at 1 040 on different crystal planes: (a) Schematic diagram showing applied stress direction in cubic cell; (b) (100) plane; (c) (010) plane; (d)  $(01\overline{1})$  plane



图 7 在(1040 , 160 MPa)时[001]取向合金蠕变不同时间的形貌

Fig.7 Morphologies of [001] orientation alloy crept at 160 MPa and 1 040 for different times: (a) 2 h; (b) 40 h; (c) 257 h

在(1040 ,160 MPa)条件下,[011]取向单晶合 金蠕变 30 h 断裂后,断口不同位置的组织形貌如图 8 所示。图 8(a)是观察样品位置的示意图,区域 *A* 为非 受力区,在该区域大部分 y'相仍呈立方体形貌,也有 部分 y'相连成筏状,且沿样品的轴线大约 45°角的方向 交叉排列,如图 8(b)所示;而在受力区域,y'相均已形 成筏状形貌,但在不同区域,筏状 y'相的形貌各异, 在远离断口的区域 *B*,筏状 y'相仍沿轴线方向约 45° 角排列,但 y'相厚度尺寸增加,如图 8(c)所示;在近 断口的 C 区域, 筏状 γ'和 γ 两相的厚度尺寸均已增加 至约 0.8 μm, 筏状 γ'相与应力轴的夹角进一步增大到 60°, 且长度尺寸减小, 并呈现波纹状形貌, 如图 8(d) 所示。

在区域 *B* 中, *y*′相沿与应力轴呈 45°角的[001]取 向形成筏状组织;而在区域 *C* 中, *y*′相明显粗化并扭 曲,且与应力轴之间的夹角逐渐增加到 60°,表明在 蠕变期间,筏状 *y*′相发生倾转。对该现象的分析认为, 组织演化特征与该区域承受拉应力及变形程度密切



图 8 在(1040 , 160 MPa)时[011]取向单晶合金拉伸蠕变断裂后不同区域的形貌 Fig.8 Morphologies in different regions of [011] orientation alloy after tensile crept up to fracture under applied stress of 160 MPa at 1040 : (a) Schematic diagram showing observation regions in specimen; (b) Region *A*; (c) Region *B*; (d) Region *C* 

相关。且随蠕变的进行,合金的应变增大,并逐渐在 样品的中间区域出现缩颈,缩颈区域承载横截面积减 小,恒载拉伸的有效应力增加,可使筏状,/相逐渐粗 化。随缩颈区域形变量的增加,伴随有蠕变位错的交 替滑移,其蠕变位错的交替滑移使筏状,/相发生扭曲。 随缩颈区域应变的进一步增大,在该区域发生晶体转 动<sup>[14]</sup>,可改变原筏状,/相的取向。

#### 2.4 蠕变期间的微观变形特征

在(1040 ,160 MPa)条件下,[001]和[011]取向 合金分别蠕变 257 h 和 30 h 断裂后的微观组织形貌如 图 9 所示。[001]取向合金蠕变 257 h 断裂后的组织形 貌如图 9(a)所示,由图 9(a)可以看出,蠕变期间,自 y 基体通道有大量细小的 y'相析出,其析出的细小 y'相 可阻碍位错运动,提高合金的蠕变抗力。蠕变后期, 在近断口区域,稳态蠕变期间形成的位错网已被破坏, 致使大量 \(110) 超位错切入筏状 y'相内,其切入的位错 形态与方向各异,如图中黑色箭头所示,其中切入的 位错发生交滑移,呈现扭折及台阶状形态,如图中白 色箭头所示,在蠕变后期,有多组位错切入筏状 y'相 内,表明此时合金已失去蠕变抗力。

在(1040 ,160 MPa)条件下,[011]取向合金蠕 变 30 h 断裂后合金的微观组织形貌如图 9(b)所示。由 图 9(b)可以看出,蠕变后期筏状 y'相已经粗化,且发 生明显扭曲,在 y/y'两相界面呈现凹凸不平特征,并有 界面位错网存在于筏状 y'/y'相之间,如图 9(b)中白色 短箭头所示;其中有少量位错切入筏状 y'相,如图 9(b) 中白色长箭头所示。与图 9(a)相比,[011]取向合金中 y'相内位错数量较少,但合金蠕变后期应变量较大,



图 9 在(1 040 ,160 MPa)时[001]和[011]取向单晶合金蠕 变断裂后的微观组织

**Fig.9** Microstructures of [001] and [011] orientations single crystal alloy after crept to rupture under applied stress of 160 MPa at 1 040 : (a) [001] orientation; (b) [011] orientation

表明[011]取向合金在蠕变后期的形变机制主要是位 错在基体通道中滑移。随蠕变的进行,合金的应变量 增大,致使样品的横断面积减小,施加载荷的有效应 力增大,直至发生合金的蠕变断裂。

## 3 讨论

3.1 蠕变期间 y'相定向粗化理论分析

蠕变期间,两取向合金中 y'相均发生明显的定向 粗化,其中,[001]取向合金中的 y'相沿垂直于应力轴 的[100]和[010]方向形成筏状组织,而[011]取向合金中 的 y'相沿与应力轴呈 45°的方向形成纤维状筏形组织, 如图 6(b)所示,形筏方向仍为[001]取向,与[100]和 [010]取向为同一晶向族。

分析认为,在高温蠕变期间,立方 y'相不同晶面 发生应变能密度变化,并使元素发生定向扩散,是促 使 y'相发生定向粗化的主要原因,但合金中 y'相发生 定向粗化的方向与立方 y'相各晶面发生的晶格扩张与 收缩密切有关,晶格扩张的晶面可诱捕较大半径的 Al、Ta 原子,故晶格扩张的晶面可诱捕较大半径的 Al、Ta 原子,故晶格扩张的品面可诱捕较大半径的 Al、Ta 原子,故晶格扩张的品线方向是 y'相定向生长 的方向<sup>[15]</sup>。[001]取向合金在拉应力蠕变期间,(100) 与(010)晶面发生沿[001]取向的晶格扩张,故立方 y' 相中两晶面扩张的晶格可诱捕较大半径的 Al、Ta 原子 沿[100]和[010]取向定向生长成为类筛网状筏形组 织<sup>[11,13]</sup>。由于[011]取向合金存在向右偏转 4°的取向 差,蠕变期间,在分切应力的作用下,(001)晶面中的 晶格发生沿[010]方向的晶格扩张,如图 4(b)的右侧所 示,其扩张晶格的法线方向为[001]取向。因此,蠕变 期间,合金中的 y'相沿[001]取向形成纤维状筏形组织。

#### 3.2 y'相筏形化取向对合金蠕变抗力的影响

高温蠕变期间,当施加应力轴一定时,其沿应力 轴方向呈 45°产生最大剪切应力,故促使位错沿最大 切应力方向发生滑移。由于单晶合金为 y'和 y 两相合 金,其 y'强化相的存在可有效阻碍位错运动,特别是 当 y'相形成筏状结构后,减少合金中 y 基体通道的数 量,若筏状 y'相具有阻碍位错运动的作用,则形成筏 状组织可有效提高合金的蠕变抗力。

[001]取向合金在蠕变期间形成的筏状 y'相与应力 轴方向垂直,故可有效阻碍位错运动,因此,[001]取 向合金具有较强的蠕变抗力和较长的蠕变寿命。但 [011]取向合金中 y'相形成的纤维状筏形组织及 y 基体 通道均与应力轴方向呈 45°,在蠕变期间承受最大剪 应力作用,由于位错易于在 y 基体通道中滑移,且[001] 取向的纤维状筏形 y'相对位错运动的阻碍作用较弱, 因此,[011]取向合金在蠕变期间具有较高的应变速率 及较短的蠕变寿命。表明合金中 y'相形成筏状结构的 取向对合金的蠕变抗力有重要影响。 如果合金在拉应力蠕变期间位错运动必须克服 Orowan 阻力,则其促使位错在 y'和 y 两相合金中运动 的临界剪切应力可表示为

$$\boldsymbol{\tau}_{\rm or} = \frac{\alpha \mu \boldsymbol{b}}{L} \tag{1}$$

式中: $\mu$  为剪切模量;b 为柏氏矢量;L 为沿 $\langle 110 \rangle$ 方 向位错在两 $\gamma$ '相之间滑移的距离; $\alpha$  为与位错在 $\gamma$ '或  $\gamma$ 基体相中运动有关的常数,当运动位错与 $\gamma$ '相相遇的 几率较大时,蠕变抗力较大, $\alpha > 1$ ,位错在 $\gamma$ 基体中 运动,与 $\gamma$ '相相遇的几率较小时, $\alpha < 1$ 。

当位错在[001]取向合金中运动时,L 值较小,运 动位错与 $\gamma$ '相相遇的几率较大( $\alpha > 1$ ),故位错运动的 临界剪应力值较大,合金具有较高的蠕变抗力;而当 位错在[011]取向合金中运动时,L 值较大,运动位错 与 $\gamma$ '相相遇的几率较小( $\alpha < 1$ ),故促使位错运动的临 界剪应力值较小,因此,合金具有较小的蠕变抗力及 较短的蠕变寿命。以上分析与实验结果相一致。

## 4 结论

 1) 经完全热处理后,[001]和[011]取向合金中立 方 y'相均以共格方式镶嵌在 y 基体相中,并沿 (100) 取 向规则排列。在试验的温度和应力范围内,与[011]取 向合金相比,[001]取向合金有较好的蠕变抗力。

2) 蠕变期间,[001]取向合金中,"相沿垂直于应力 轴方向形成 N-型筏状组织,而[011]取向合金中,"相沿 [001]取向形成纤维状筏形组织,且与施加应力轴方向 成45°角排列,其中立方,"相不同晶面中扩张晶格的法 线是筏状,"相的定向生长方向。

3) 随蠕变进行至后期,两取向合金中的筏状 y' 相逐渐发生粗化和扭折,[001]取向合金在蠕变后期的 变形机制是位错剪切 y'相,而[011]取向合金的变形机 制主要是形变位错在基体通道中滑移。

#### REFERENCES

- KANDA M, SAKANA M, OHNAMI M. High temperature low cycle fatigue of CMSX-2 Ni-base single crystal superalloy[J]. J Eng Mat Tech, 1997, 119: 153–160.
- [2] MERIC L, POUBANNE P, CAILETAUD G. Single crystal modeling for structure calculations: Part -Model presentation[J]. J Eng Mater Tech, 1991, 113: 162–170.
- [3] MAYR C, EGGELER G, WEBSTER G A. Double shear creep testing of superalloy single crystal at temperatures above 1 000
   [J]. Mater Sci Eng A, 1995, 199: 121–130.

362

- [4] ARRELL D J, VALLES D J. Rafting prediction criterion for superalloys under a multi-axial stress[J]. Scripta Materialia, 1996, 35: 727–732.
- [5] 岳珠峰,胡卫兵,吕震宙. 镍基单晶合金筏化规律及蠕变持 久寿命模型在复杂应力状态下的考核[J]. 稀有金属材料与工 程,2002,31(6):419-422.

YUE Zhu-feng, HU Wei-bing, LÜ Zhen-zhou. On the validation of rafting law and creep life of nickel-base single crystal superalloys under multiaxial stress states[J]. Rare Metal Materials and Engineering, 2002, 31(6): 419–422.

- [6] 温志勋,苟文选,岳珠峰. 镍基单晶裂纹扩展路径研究[J].稀 有金属材料与工程,2007,36(9):1549-1553.
   WEN Zhi-xun, GOU Wen-xuan, YUE Zhu-feng. Crack propagation paths and fracture of Ni-based single crystal[J]. Rare Metal Materials and Engineering, 2007, 36(9): 1549-1553.
- [7] 魏鹏义,杨治国,程晓鸣,钟振刚,李 聘,刘世中.DD3 单 晶高温合金拉伸蠕变各项异性[J]. 航空材料学报,1999,19(3): 7-11.

WEI Peng-yi, YANG Zhi-guo, CHENG Xiao-ming, ZHONG Zhen-gang, LI Pin, LIU Shi-zhong. Tensile creep anisotropy of single crystal superalloy DD3[J]. Journal of Aeronautical Materials, 1999, 19(3): 7–11.

[8] 岳珠峰,杨治国,尹泽勇,魏鹏义,程晓明.单晶涡轮叶片材
 料本构模型及应用研究[J].燃气涡轮试验与研究,2003,16(1):
 50-56.

YUE Zhu-feng, YANG Zhi-guo, YIN Ze-yong, WEI Peng-yi, CHENG Xiao-ming. Constitutive relationship of nickel-base single crystal superalloys and applications[J]. Gas Turbine Experiment and Research, 2003, 16(1): 50–56.

[9] 卿 华, 江和甫, 温卫东, 吴长波, 胡仁高, 覃志贤, 孙景国.
 单晶涡轮叶片晶体取向优化设计[J]. 航空动力学报, 2008, 23(12): 2184-2189.

QING Hua, JIANG He-fu, WEN Wei-dong, WU Chang-bo, HU Ren-gao, QIN Zhi-xian, SUN Jing-guo. Optimization design of crystallographic orientation in single crystal turbine blade[J]. Journal of Aerospace Power, 2008, 23(12): 2184–2189.

- [10] 彭志方,任遥遥,樊宝珍,秦俊武,燕 平,赵京晨. 镍基单 晶高温合金 CMSX-2 持久拉伸的显微组织形态及力学行为[J]. 金属学报, 1999, 35(3): 265-270.
  PENG Zhi-fang, REN Yao-yao, FAN Bao-zhen, QIN Jun-wu, YAN Ping, ZHAO Jing-chen. Microstructural morphologies and mechanical behaviors of nickel-base single crystal superalloy CMSX-2 during sustaining tension[J]. Acta Matallurgica Sinica,
- 1999, 35(3): 265-270.
  [11] 田素贵,陈昌荣,杨洪才,胡壮麒. 单晶 Ni 基合金高温蠕变 期间 y'相定向粗化驱动力的有限元分析[J]. 金属学报, 2000, 36(5): 465-471.
  TIAN Su-gui, CHEN Chang-rong, YANG Hong-cai, HU

Zhuang-qi. Finite element analysis of driving force of  $\gamma'$  phase directional coarsening for a single crystal nickel-base superalloy during high temperature creep[J]. Acta Metallurgica Sinica, 2000, 36(5): 465–471.

- [12] 水 丽,田素贵,金 涛,胡壮麒.预压缩单晶镍基合金的组织结构及在拉伸蠕变期间的粗化特征[J].稀有金属材料与工程,2006,35(8):1182-1186.
   SHUI Li, TIAN Su-gui, JIN Tao, HU Zhuang-qi. Microstructure of pre-compressed single crystal nickel-base superalloy and its coarsening feature during tensile creep[J]. Rare Metal Materials
- [13] TIAN Su-gui, ZHOU Hui-hua, ZHANG Jing-hua, HU Zhuang-qi. Directional coarsening of γ' phase in single crystal nickel based superalloys during tensile creep[J]. Mater Sci Tech, 2000, 16(4): 451–456.

and Engineering, 2006, 35(8): 1182-1186.

- [14] 郭喜平,傅恒志,孙家华.单晶高温合金中 y'筏形组织的形成 及转动[J]. 金属学报, 1994, 30(7): 321-326.
  GUO Xi-ping, FU Heng-zhi, SUN Jia-hua. y' raft formation and rotation in single crystal high temperature[J]. Acta Metallurgica Sinica, 1994, 30(7): 321-326.
- [15] TIAN Su-gui, CHEN Chang-rong, HU Zhuang-qi. Evolution and analysis of γ' rafting during creep of single crystal nickel-base superalloy[J]. Mater Sci Tech, 2001, 17(7): 736–744.

(编辑 李艳红)