第21卷第2期 Vol.21 No.2

文章编号:1004-0609(2011)02-0332-09

Mo 对镍基单晶高温合金组织及持久性能的影响

胡聘聘^{1,3},陈晶阳¹,冯 强^{1,2},陈艳辉¹,曹腊梅³,李相辉³

- (1. 北京科技大学 新金属材料国家重点实验室,北京 100083;
- 2. 北京科技大学 国家材料服役安全科学中心,北京 100083;
- 3. 北京航空材料研究院 先进高温结构材料国防科技重点实验室,北京 100095)

摘 要:通过在不含 Mo 的基础合金 USTB-F7 中添加 1.5%(质量分数)Mo,形成合金 USTB-F9,研究 Mo 对镍基 单晶高温合金组织稳定性和持久寿命的影响。1 100 时效与热处理组织的研究分析表明:合金 USTB-F7 中 y'相 形貌介于球形和立方形之间,属中间态形貌;经长期热处理 2 000 h 后,其形貌保持稳定,仅发生粗化而未产生 筏排现象。Mo 的添加使γ相中 Re、Mo 和 Cr 等元素含量增加,提高了合金 USTB-F9 的 γ/γ'点阵错配度和 γ'相的 立方度,从而加速长期热处理过程中的筏排化进程,仅 200 h 就发生明显的筏排现象。同时, Mo 强烈促进富含 Re、Mo、W 和 Cr 等元素的 P 相和 σ 相的析出,使析出时间由合金 USTB-F7 的 700 h 提前到合金 USTB-F9 的 100 h。在 1 100 和 140 MPa 下的持久性能测试表明,尽管 Mo 的添加提高了 γ'相的体积分数和错配度,并促进 筏排组织的形成,有利于合金持久性能的提高;但由于 Mo 促进 TCP 相的大量析出,从而使合金的持久寿命降低。

关键词:高温合金; Mo; 错配度; 组织稳定性; 持久寿命 中图分类号: TG146.1; TG132.3 文献标志码:A

Effects of Mo on microstructure and stress-rupture property of Ni-based single crystal superalloys

HU Pin-pin^{1,3}, CHEN Jing-yang¹, FENG Qiang^{1,2}, CHEN Yan-hui¹, CAO La-mei³, LI Xiang-hui³

- (1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
- 2. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China;
 - 3. National Key Laboratory of Science and Technology on Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China)

Abstract: The effects of Mo on the microstructural stability and stress-rupture property were investigated in two experimental Ni-based single crystal superalloys when adding 1.5% Mo (mass fraction) into the Mo-free baseline alloy. The heat treatment results indicate that the intermediate γ' precipitates in the dendrite core of the Mo-free alloy do not change in morphology and only become coarsening after (1 100 , 2 000 h) heat treatment. Mo addition increases the content of Re, Mo and Cr in the γ phase. As a result, the lattice misfit is enlarged and γ' precipitates become more cuboidal, the time of forming the rafting structure is significantly enhanced and occurs at about 200 h. Meanwhile, the TCP phases precipitate after 700 h in the Mo-free alloy while TCP phases are observed only after 100 h in the Mo-containing alloy. Mo addition promotes the formation of TCP phases significantly, which are identified as the σ and P phases and enriched in Re, W, Cr and Mo. The investigation of stress-rupture properties at 1 100 indicates that Mo addition shortens the stress-rupture life of the baseline alloy due to the precipitation of large amount of TCP phases, although Mo addition increases the volume fraction of the γ' phase and enlarges the lattice misfit with a good rafting microstructure.

Key words: superalloys; Mo; lattice misfit; microstructural stability; stress-rupture life

基金项目:国家高技术研究发展计划资助项目(2007AA03A225);国家重点基础研究发展计划资助项目(2010CB631201);国家自然科学基金资助项

目(50671015); 教育部"新世纪优秀人才支持计划"资助项目(NCET-06-0079)

收稿日期:2010-03-09;修订日期:2010-06-18

通信作者: 冯 强, 教授, 博士; 电话: 010-82375850; E-mail: qfeng@skl.ustb.edu.cn

镍基单晶高温合金是制造高推重比先进航空发动机的关键材料^[1]。自 VERSNYDER 等^[2]发明定向凝固技术以来,单晶高温合金的承温能力得到显著提高。自 20 世纪 80 年代,出现了以 PWA1480 和 René N4为代表的第一代单晶高温合金;并在此基础上,发现Re 的引入可以明显提高合金的高温性能,进而开发出含 Re 分别为 3%和 6%(质量分数)的第二、三代高温合金等。但 Re 成本高,密度高,是有害拓扑密排(TCP)相的形成元素,因而限制其在单晶高温合金中的进一步使用。当前,充分挖掘传统强化元素的潜力,对于合金性能的提高及成本的降低具有重要意义。

Mo 是有效的固溶强化元素,能够降低合金层错 能,从而提高持久性能^[3]。但是,由于 Mo 对组织稳 定性[4]和抗氧化性能不利[5] 在传统的合金设计中仅添 加少量甚至不引入 Mo。近年来,有文献报道^[6-7], Mo 可以显著提高合金的 y/y'点阵错配度 促进两相界面位 错网的形成,从而提高合金的蠕变性能。基于 Mo 有 效的强化效果,日本 NIMS 通过合理调整 Ru 和 Mo 含量,得到性能优异的第四、五代单晶高温合金[8-9]。 HOBBS 等[10]也证实 Mo 能显著提高合金低温高应力 下的蠕变性能。而 ZHANG 等[4]的研究表明:适当添 加 Mo 有利于提高界面位错密度,降低蠕变速率,从 而提高合金高温低应力下的蠕变性能;在中温中应力 条件下, Mo 通过降低堆垛层错能进而提高合金的蠕 变性能。但当 Mo 加入过量时, y 基体中 Mo 的过饱和 程度过大,从而促进脆性 μ 相的析出,并恶化合金性 能。马文有等[4]在其研究的合金体系中也发现类似现 象。总之,目前对 Mo 在单晶高温合金中的作用尚存 在争议,有待进一步深入。

本文作者通过两种实验合金的比较分析,研究 Mo 的添加对镍基单晶高温合金显微组织和持久性能的影响,并初步探讨 Mo 的加入与合金元素成分分配比、 γ/γ '点阵错配度、 γ '相形貌、组织稳定性以及持久性能之间的关系。

1 实验

两种实验合金的单晶试棒通过定向凝固技术制备 而成,尺寸为 d 14 mm × 150 mm。随后采用原子吸收分光光度法测定合金成分,如表 1 所列。其中,合金 USTB-F9 在不含 Mo 的合金 USTB-F7 基础上添加 1.5%Mo。

试棒进行(1320,8h)固溶处理后,对一组试样进行1100不同时间的组织稳定性(热暴露)实验;对

表 1 实验合金的实测成分

Table 1 Measured compositions of investigated alloys

A II ove	Mass fraction/%							
Alloy -	Al	Ta	W	Co	Re	Cr	Mo	Ni
USTB-F7	6.0	8.2	5.5	7.3	4.5	4.0	0	Bal.
USTB-F9	6.2	8.0	5.5	7.3	4.5	4.1	1.5	Bal.

另一组样品进行(1 140 , 8 h)+(870 , 16 h)的时效 处理,随后进行 1 100 , 140 MPa 条件下的持久性 能测试。

随后,对合金进行组织分析,金相试样浸蚀剂为1%氢氟酸+33%硝酸+33%醋酸+33%蒸馏水。合金显微组织观察在蔡康4XCE型光学显微镜和ZEISS SUPRA55型场发射扫描电镜(SEM)下进行。用 Image-Pro 软件统计 y'相的尺寸,用点分析法统计 y'相的体积分数。

持久性能测试后,利用扫描电镜下的能谱分析模式(EDS)对枝晶干处筏排组织中粗大的 γ 和 γ '相进行成分测定,并计算合金元素的成分分配比(k_i)。 γ/γ '相成分分配比可用下述公式表示:

$$k_i = x_{i\nu} / x_{i\nu'} \tag{1}$$

其中: x_{iy} 和 $x_{iy'}$ 分别表示合金元素 i 在 γ 和 γ' 相中的摩尔分数。当 $k_i > 1$ 时,元素 i 富集于 γ 相;而当 $k_i < 1$ 时,元素 i 富集于 γ' 相。

为了更好地观察 TCP 相的形貌和空间分布特征并进行相鉴定,对经(1100 ,400 h)热处理后的合金 USTB-F9 试样进行相萃取实验。相萃取电解液成分为 9 份甲醇+1 份盐酸+1%酒石酸(质量分数),电流密度为 0.04 A/cm²,萃取时间为 10 h。相萃取结束后收集相萃取产物,并利用 Rigaku 2500 型 X 射线衍射仪(XRD)对其进行相鉴定分析。为进一步验证 TCP 相结构,还通过 JEOL-2010 型透射电子显微镜(TEM)对析出的 TCP 相进行相鉴定。

需要指出的是,由于镍基高温合金成分偏析的影响,枝晶干和枝晶间的显微组织形貌有一定差别。为了便于比较与讨论,本文作者所述显微组织均为合金 枝晶干处的组织。

2 结果

2.1 长期热处理的组织稳定性

图 1 所示为两种实验合金经 1 100 不同热处理时间后枝晶干处的典型显微组织。由图 1 可看出,合

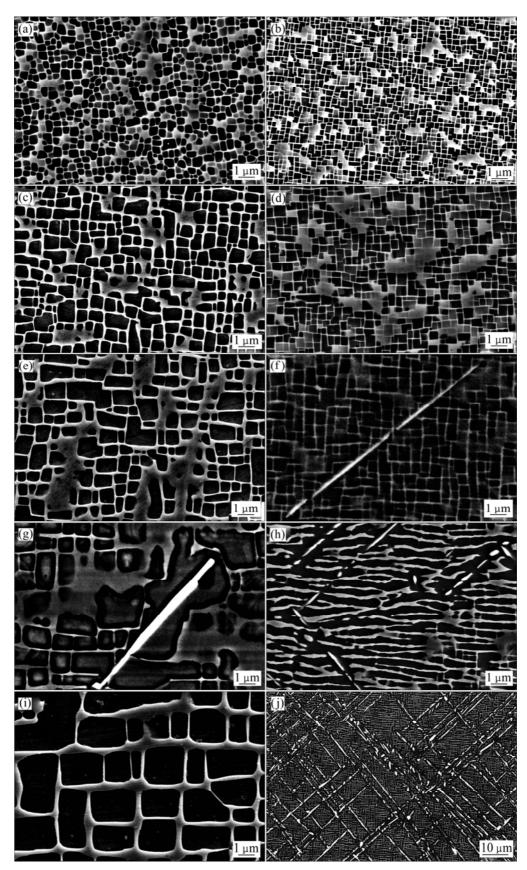


图 1 实验合金经 1 100 不同热处理时间后枝晶干处典型的显微组织

Fig.1 Typical microstructures in dendrite core of two investigated alloys after heat-treating at 1 100 for different times: (a) USTB-F7, 8 h; (b) USTB-F9, 8 h; (c) USTB-F7, 50 h; (d) USTB-F9, 50 h; (e) USTB-F7, 200 h; (f) USTB-F9, 100 h; (g) USTB-F7, 700 h; (h) USTB-F9, 200 h; (i) USTB-F7, 2 000 h; (j) USTB-F9, 350 h

金经长期热处理后,γ'相的尺寸和形貌均发生了很大 的变化。合金 USTB-F7 在时效之初,形貌介于立方形 和球形之间,为中间态形貌,尺寸为 0.40 μm(见图 1(a)); 热处理 50 h 后, y'相明显长大, 为 0.73 µm(见 图 1(c)); 到 200 h 后,尺寸进一步长大到 1.23 µm(见 图 1(e)); 热处理 700 h后, y'相的粗化已经较严重,而 形貌没有明显变化,仍为中间态。同时,在枝晶干处 已发现针状二次相析出(见图 1(g)),能谱分析及后续 的相鉴定表明,该二次相为 TCP 相;直至 $2\,000\,h$, y'相的形貌仍未发生明显变化,但已粗化长大至 2.12 μm, 且未发现筏排现象(见图 1(i)), 需要指出的是热 处理 2 000 h 后, 枝晶干处析出的 TCP 相与 700 h 相 比显著增加,但是为了突出显示 y'相形貌的变化,图 1(i)避开了 TCP 相。合金 USTB-F9 时效 8 h 后 , γ'相 为立方状,尺寸为 0.29 μm(见图 1(b)); 经热处理 50 h 后,γ'相明显长大,为 0.52 μm(见图 1(d))。与合金 USTB-F7 经 50 h 时效后的组织相比,生长速度较慢; 时效 100 h 后,在枝晶干处析出了 TCP 相(见图 1(f)), 能谱分析表明该 TCP 相富含 Re、W、Mo 和 Cr 元素。 时效 200 h 后, TCP 相大量析出并长大;伴随着 TCP 相的析出 ,/相也发生了相互的连接 ,形成筏排组织(见 图 1(h)); 时效 350 h 后, TCP 的析出更为严重, 枝晶 干处析出的 TCP 相已长大延伸到枝晶间。同时,筏排 粗化现象也更为明显(见图 1(j))。

2.2 合金元素成分分配比

表 2 所列为实验合金持久性能测试后枝晶干处各合金元素的成分分配比。分析表明:Mo 元素本身主要分配于 γ 相 ,并且 Mo 的加入显著提高了 Re 的分配比 ,同时使 Cr 的成分分配比增大 ,而对其他合金元素的成分分配比没有显著影响。

表 2 实验合金持久性能测试后枝晶干处 γ/γ' 相的合金元素 成分分配比

Table 2 Elemental partitioning ratio in dendrite core of two investigated alloys after stress-rupture testing

Alloy	Al	Ta	W	Co	Re	Cr	Mo
USTB-F7	0.50	0.38	1.60	1.82	7.29	2.75	_
USTB-F9	0.49	0.33	1.69	1.98	12.02	3.84	3.44

2.3 TCP 相鉴定

图 2 所示为合金 USTB-F9 经(1 100 , 400 h)热 处理试样相萃取后 TCP 相残留在合金基体上的三维 形貌。由图 2 可看出 , TCP 相呈典型的"网络编篮状" 分布 ,且沿某些特定的晶体取向析出。相萃取后对 TCP 相的能谱分析表明,TCP 相富集 Re、Mo、W 和 Cr 等合金元素,分别为实测合金成分的 19.7、6.2、6.7 和 3.0 倍;但几乎不含 Al 和 Ta,如表 3 所列。图 3 所示为合金 USTB-F9 相萃取产物的 XRD 谱。XRD 分析表明,该合金中析出的 TCP 相为 σ 相和 P 相。同时,XRD 谱中也出现了 $\gamma'(\gamma)$ 相的峰,这说明相萃取的 TCP产物中也含有少量 $\gamma'(\gamma)$ 相。

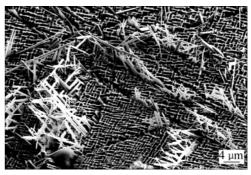


图 2 合金 USTB-F9 经(1 100 , 400 h)热处理试样相萃取后 TCP 相的典型形貌

Fig.2 Typical morphology of phase-extracted residues of USTB-F9 alloy after heat-treating at 1 100 for 400 h

表 3 合金 USTB-F9 相萃取后 TCP 相的 EDS 结果

Table 3 EDS results of extracted TCP precipitates of alloy USTB-F9 (mole fraction, %)

Al	Ta	W	Co	Re	Cr	Mo	Ni
0	0	12.8	10.9	29.5	14.3	6.2	Bal.

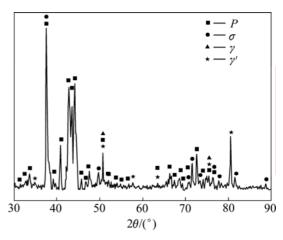


图 3 合金 USTB-F9 经(1 100 , 400 h)热处理后相萃取产物的 XRD 谱

Fig.3 XRD pattern of extracted precipitates in USTB-F9 alloy after heat-treating at 1 100 for 400 h

为进一步分析 TCP 相,对合金 USTB-F9 经 $(1\ 100\ ,400\ h)$ 时效后析出的 TCP 相进行了 TEM 鉴定。图 4(a)和(b)为 TCP 相的 TEM 像。TCP 相的电子

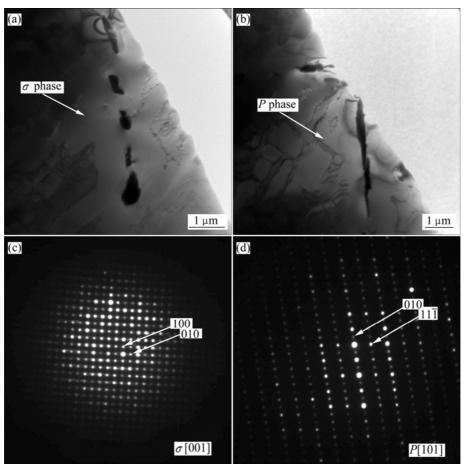


图 4 合金 USTB-F9 经(1 100 , 400 h)时效后析出 TCP 相的 TEM 像及相应的 SAD 谱

Fig.4 TEM images(a, b) and indexed SAD patterns(c, d) of TCP phases in USTB-F9 alloy after heat-treating at 1 100 for 400 h: (a), (c) σ phase; (b), (d) P phase

衍射谱分析表明:该合金中析出的 TCP 相为 σ 相或 P 相;其中,图 4(c)为 σ 相的[001]电子衍射谱,图 4(d)则是 P 相的[101]电子衍射谱。这与 XRD 分析结果是相吻合的。

2.4 持久性能

图 5 所示为实验合金经(1 140 ,8 h)+(870 ,16 h)时效后枝晶干处典型显微组织。由图 5 可看出,与(1 100 ,8 h)时效处理后的组织(图 1(a)和(b))相比,本次热处理后两种合金 y'相的形貌保持不变,但尺寸增加,说明高温(1 140)加速了 y'相的长大。将两种实验合金 y'相的形貌、体积分数和尺寸大小等组织特征进行统计,其结果如表 4 所列。对比两种合金再次表明(见图 5(a)和(b)),Mo 的添加对镍基单晶高温合金的时效组织有显著影响。不含 Mo 的合金 USTB-F7 中 y'相的形貌介于球形和立方形之间,为中间态形貌,而含 Mo 合金 USTB-F9 中 y'相呈典型的立方形。同时,

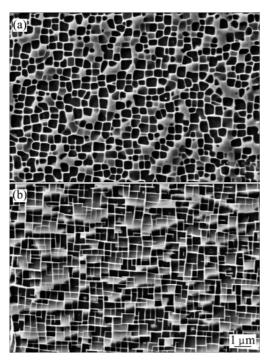

合金 USTB-F9 中 γ' 相的平均尺寸为 0.38 μ m , 小于合金 USTB-F7 中 γ' 相的平均尺寸(0.45 μ m) ,但其体积分数较高。需要指出的是 , γ' 相体积分数统计的部位为枝晶干中心处 ,是合金中 γ' 相体积分数最低的部位 ,实际的平均体积分数应高于此值。

表 5 所列为两种实验合金在 1 100 , 140 MPa 条件下的持久寿命。合金 USTB-F7 和 USTB-F9 的最

表 **4** 实验合金经(1 140 , 8 h)+(870 , 16 h)时效处理后 枝晶干处 y'相的特征

Table 4 Characteristic of γ' precipitates in dendrite core of investigated alloys after aging treatment at (1 140 , 8 h)+ (870 , 16 h)

Alloy	Morphology	Volume fraction/%	Size/μm	
USTB-F7	Intermediate	56	0.45	
USTB-F9	Cuboidal	62	0.38	

Fig.5 Typical microstructures in dendrite core of USTB-F7 (a) and USTB-F9 (b) alloys after aging treatment at $(1\ 140\ , 8\ h)+(870\ , 16\ h)$

表 5 实验合金在(1 100 , 140 MPa)条件下的持久寿命 **Table 5** Stress-rupture life of investigated alloys at 1 100 140 MPa

Alloy	Specimen 1 Specimen 2		Stress rupture-life/h
USTB-F7	72	80	72
USTB-F9	61	70	61

短持久寿命分别为 72 h 和 61 h , 说明 Mo 的加入使合金的持久寿命略有降低。图 6 所示为两种实验合金经持久性能测试后离断口 15 mm 处其纵截面(010)面 SEM 背散射(BSE)模式下的组织形貌。由图 6 可看出 , 合金 USTB-F7 和 USTB-F9 在持久性能测试后均析出了富集 Re、W、Mo 和 Cr 的 TCP 相 , 而含 Mo 合金中 TCP 的含量明显高于基础合金 USTB-F7 的。

3 分析与讨论

y/y'点阵错配度(δ)与 y'相形貌^[11]、合金的力学性能^[12]和组织稳定性^[13]密切相关。较大的错配度能提高

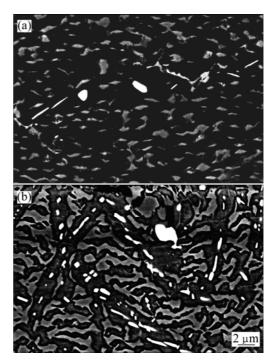


图 6 实验合金经持久性能测试后在离断口 15 mm 处沿纵截面(010)面的组织形貌

Fig.6 Sectional microstructures of (010) plane at 15 mm away from fracture surface of USTB-F7 (a) and USTB-F9 (b) alloys after stress-rupture testing

合金的筏排化程度,促进 γ/γ' 界面位错网的形成,从而提高合金高温低应力条件下的蠕变性能。 γ/γ' 点阵错配度(δ)由公式(2)表示 $^{[14]}$:

$$\delta = 2(a_{\gamma'} - a_{\gamma})/(a_{\gamma'} + a_{\gamma}) \tag{2}$$

式中: $a_{y'}$ 和 a_{y} 分别为y'相和y相的点阵常数。

FÄHRMANN 等[11]研究表明: γ '相形貌受错配度 正负和大小的影响。当错配度接近于零时, γ '相的形貌为球形;随着错配度绝对值变大, γ '相的形貌逐渐 向立方形转变。此外, γ 相和 γ '相点阵常数的大小取决于 γ 相和 γ '相中固溶的原子大小及其数量,也即受合金元素成分分配比的影响。CARON^[15]分析 γ 相和 γ '相成分与错配度的关系, γ 相和 γ '相的点阵常数与合金元素在两相中成分之间的关系由公式(3)和(4)表示:

$$a_{\gamma} = a_{\text{Ni}} + \sum V_i x_i \tag{3}$$

$$a_{\gamma'} = a_{\text{Ni}_3\text{Al}} + \sum V_i' x_i' \tag{4}$$

式中: a_{Ni} 和 $a_{Ni,Al}$ 分别为纯 Ni 和纯 Ni₃Al 的点阵常数 x_i 和 x_i' 分别为合金元素 i 在 y 和 y' 相中的摩尔分数;

 V_i 和 V_i' 分别为合金元素 i 在纯 Ni 和纯 Ni₃Al 中的 Vegard 系数。综上所述, γ 相和 γ' 相的成分决定了合金元素成分分配比,影响了点阵错配度的正负及其大小,最终影响了 γ' 相的形貌。在本研究中,由图 1(a) 和(b)及图 5(a)和(b)可见,Mo 的添加促进了 γ' 相形貌由中间态向立方形转变。这是因为 Mo 元素的添加改变了合金元素在 γ 相和 γ' 相中的分配比和错配度。参考合金元素的成分分配比可知(见表 2),Mo 本身富集于 γ 相,并且 Mo 的添加使 Re 的分配比明显增大,从而使 γ 及 γ' 相点阵常数的差值变大,进而使 γ/γ' 点阵错配度绝对值变大,最终提高含 Mo 合金中 γ' 相的立方度。

两种实验合金在长期热暴露过程中 γ'相均发生了 粗化。其中,合金 USTB-F9 出现了非加载下的筏排化 现象(见图 1(h))。y'相的粗化和长大是按照 Ostwald 熟 化方式发生的扩散长大,而非加载下的筏排化则是 Ostwald 熟化机制与 y/y′相界面的错配应力共同作用的 结果。在热暴露早期,γ'相长大的主要驱动力为界面 能的降低,长大过程主要受扩散控制。加 Mo 合金中 Re 的分配比较高,阻止了合金元素的扩散,进而抑制 了该合金中 γ'相的长大。随着热暴露时间的延长,由 ッ/ッ′两相点阵错配度引起的弹性共格应力对粗化过程 将产生显著的影响[16-17]。对于错配度较大、 γ' 相立方 度较高的合金 , y 与 y'两相共格界面存在较高的错配应 力。受其影响,合金元素发生定向扩散, y'相优先沿 $\langle 001 \rangle$ 方向长大。同时,在 y/y'两相共格界面的位错网 协调了两相的共格错配应力,改变了 γ'相原有的弹性 应力场,使 y'相中心至边缘的弹性应力梯度消失,从 而导致非加载下的三向筏排化现象。合金 USTB-F7 经 2 000 h 热暴露后组织依然保持稳定,没有发生筏排 化(见图 1(i)), 而加 Mo 合金仅经过 200 h 热暴露,其 组织即被明显破坏,发生了筏排化(见图 1(h))。原因 在于合金 USTB-F9 中 Re 和 Mo 等元素的分配比较高 (见表 2), 合金的错配度增大, 共格应变能增加, 为长 期热暴露过程中的筏排化行为提供了足够的驱动力, 因此,加 Mo 合金出现了非加载下的筏排化现象。这 与本课题组前期的研究结果[13]是相符的。

对比合金 USTB-F7 与 USTB-F9 长期时效过程中的 TCP 相析出情况可以发现,合金 USTB-F7 开始析出 TCP 相的时间为 700 h(见图 1(g)),而合金 USTB-F9 开始析出 TCP 相的时间为 100 h(见图 1(f)),这说明 Mo 强烈促进 TCP 相的析出。结合合金元素的分配比分析,表明 Mo 作为一种 TCP 相的强形成元素,其本

身富集于 γ 相;同时,Mo 的加入显著促进了 Re 向 γ 相中的分配,也使 Cr 的成分分配比略有提高,从而提高了 TCP 相形成元素在 γ 相中的过饱和度,因而促进了 TCP 相的析出。需要指出的是,在持久性能测试后的组织中,分别在 72 h 和 61 h 就发现合金 USTB-F7 和 USTB-F9 中有 TCP 相析出(见图 6(a)和(b))。这说明无论是在含 Mo 合金还是不含 Mo 合金中,应力均显著促进了 TCP 相的析出。这与本课题组的前期工作 [18] 也是相符的。

从强化原理上讲,单晶高温合金中的主要强化相为 y'相,其体积分数、尺寸及形貌对合金的力学性能起重要作用。MURAKUMO 等^[19]的研究表明,合金的持久性能随 y'相体积分数的增加先提高后降低,存在一定的峰值,一般在 70%左右达到最佳效果。对照合金 USTB-F7 和 USTB-F9 可见 Mo 的引入使枝晶干处 y'相最小体积分数由 56%增加到 62%,因而有利于合金持久性能的提高。

从 y'相的形貌看, CARROLL 等[20-21]及课题组前 期研究[22]表明:错配度为零和 y'相呈球形的合金,其 蠕变性能最差,错配度较小和 y'相形貌处于中间态的 合金蠕变性能次之,而具有较高错配度并且 γ'相为立 方形的合金蠕变性能最好。本研究中,随着 Mo 的加 入, y'相的形貌由中间态转变为立方形, 应该提高合 金的持久寿命。此外,具有高立方度 y'相和较大错配 度的合金易于促进筏排化的进程,根据 NATHAL 和 EBERT^[23]以及 CARON 等^[24]的报道,筏排组织的形成 对高温低应力条件下持久性能的提高是有利的。因 此,从y'相的形貌特征上看,Mo的引入有利于合金持 久性能的提高。然而,实验结果表明,含 Mo 合金 USTB-F9 的持久性能比 USTB-F7 的略有下降。其主 要原因在于高温加载促进了 TCP 相的析出,它一方面 降低了基体中强化元素的含量,弱化了强化效果;另 一方面,由于 TCP 相为脆硬相,易于产生应力集中, 成为裂纹源及裂纹扩展的快速通道,因而使合金的持 久性能下降。综上所述,从对强化相的影响看,Mo 的添加提高了 y'相的体积分数,增加了强化相数量。 同时, 使 γ'相立方度和错配度提高, 并有利于筏排组 织的形成,从而提高合金高温低应力下的持久性能; 而从 TCP 相的析出看, Mo 强烈促进 TCP 相析出,不 仅使析出时间提前,而且使其体积分数明显提高。在 两个因素的综合作用下,由于TCP相的析出成为影响 合金性能的重要因素,因而合金 USTB-F9 的持久性能 有所降低。

4 结论

- 1) Mo 的添加显著促进了 Re 在 γ 相中的富集,也使 Cr 的分配比增加,而对 Al、Ta、W 和 Co 的分配比没有显著影响。同时,Mo 主要分布在 γ 相中,Mo 的添加促进了 γ '相立方度和错配度的提高。
- 2) 在 $1\,100$ 长期热暴露实验中,不含 Mo 合金中呈中间态的 γ '相形貌稳定,只出现粗化, $2\,000\,h$ 后也未发生筏排。随着 Mo 的加入,含 Mo 合金仅 $200\,h$ 热处理后,就出现了筏排化。同时,Mo 的加入显著促进富集 Re、Mo、W 和 Cr 等元素的 $TCP(\sigma\,\Pi\,P)$ 相的析出,使其析出时间由 USTB-F7 合金的 $700\,h$ 提前到 USTB-F9 合金的 $100\,h$ 。
- 3) Mo 的加入促进了 γ '相体积分数的提高、形貌的立方化和筏排化进程,有利于持久性能的提高;但同时 Mo 也显著促进了 TCP 相的析出,破坏合金的持久性能。在两种因素的综合作用下,含 Mo 合金的持久寿命有所降低。

REFERENCES

2000: 2-9.

- [1] POLLOCK T M, TIN S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties[J]. Journal of Propulsion and Power, 2006, 22(2): 361–374.
- [2] VERSNYDER F I, SHANK M E. The development of columnar grain and single crystal high temperature materials through direction solidification[J]. Materials Science and Engineering, 1970, 6(4): 213–247.
- [3] ZHANG J, LI J, JIN T, SUN X, HU Z. Effect of Mo concentration on creep properties of a single crystal nickel-base superalloy[J]. Materials Science and Engineering A, 2010, 527(13/14): 3051-3056.
- [4] 马文有, 韩雅芳, 李树索, 郑运荣, 宫声凯. Mo 含量对一种镍基单晶高温合金显微组织和持久性能的影响[J].金属学报, 2006, 42(11): 1191-1196.
 - MA Wen-you, HAN Ya-fang, LI Shu-suo, ZHENG Yun-rong, GONG Sheng-kai. Effect of Mo content on the microstructure and stress rupture of a Ni base single crystal superalloy[J]. Acta Metallurgica Sinica, 2006, 42(11): 1191–1196.
- [5] 黄乾尧, 李汉康, 陈国良, 郭建亭. 高温合金[M]. 北京: 冶金 工业出版社, 2000: 2-9. HUANG Qian-yao, LI Han-kang, CHEN Guo-liang, GUO Jian-ting. Superalloys[M]. Beijing: Metallurgical Industry Press,

- [6] ZHANG J X, MURAKUMO T, HARADA H, KOIZUMI Y. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138[J]. Scripta Materialia, 2003, 48(3): 287–293.
- [7] ZHANG J X, WANG J C, HARADA H, KOIZUMI Y. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep[J]. Acta Materialia, 2005, 53(17): 4623–4633.
- [8] KOIZUMI Y, KOBAYASHI T, YOKOKAWA T, ZHANG J X, OSAWA M, HARADA H, AOKI Y, ARAI M. Development of next-generation Ni-base single crystal superalloys[C]// GREEN K A, POLLOCK T M, HARADA H, HOWSON T E, REED R C, SCHIRRA J J, WALSTON S. Superalloys 2004. Champion PA: TMS, 2004: 35–43.
- [9] SATO A, HARADA H, YEH A C, KAWAGISHI K, KOBAYASHI T, KOIZUMI Y, YOKOKAWA T, ZHANG J X. A 5th generation SC superalloy with balanced high temperature properties and processability[C]// REED R C, GREEN K A, CARON P, GABB T P, FAHRMANN M G, HURON E S, WOODARD S A. Superalloys 2008. Champion PA: TMS, 2008: 131–138.
- [10] HOBBS R A, BREWSTER G J, RAE C M F, TIN S. Evaluation of ruthenium-bearing single crystal superalloys—A design of experiments[C]// REED R C, GREEN K A, CARON P, GABB T P, FAHRMANN M G, HURON E S, WOODARD S A. Superalloys 2008. Champion PA: TMS, 2008: 171–180.
- [11] FÄHRMANN M, FRATZL P, PARIS O, FÄHRMANN E, JOHNSON W C. Influence of coherency stress on microstructural evolution in model Ni-Al-Mo alloys[J]. Acta Metallurgica et Materialia, 1995, 43(3): 1007–1022.
- [12] ZHANG J X, HARADA H, KOIZUMI Y, KOBAYASHI T. Dislocation motion in the early stages of high-temperature low-stress creep in a single-crystal superalloy with a small lattice misfit[J]. Journal of Materials Science, 2010, 45(2): 523–532.
- [13] 陈晶阳, 赵 宾, 冯 强, 曹腊梅, 孙祖庆. Ru和Cr对镍基单晶高温合金 y/y'热处理组织演变的影响[J]. 金属学报, 2010, 46(8): 897–906.

 CHEN Jing-yang, ZHAO Bin, FENG Qiang, CAO La-mei, SUN Zu-qing. Effects of Ru and Cr on y/y' microstructural evolution of Ni-based single crystal superalloys during heat treatment[J]. Acta Metallurgica Sinica, 2010, 46(8): 897–906.
- [14] NATHAL M V, MACKAY R A, GARLICK R G. Temperature dependence of γ-γ' lattice mismatch in nickel-base superalloys[J]. Materials Science and Engineering A, 1985, 75(1/2): 195–205.
- [15] CARON P. High γ' solvus new generation nickel-based superalloys for single crystal turbine blade applications[C]// POLLOCK T M, KISSINGER R D, BOWMAN R R, GREEN K A, MCLEAN M, OLSON S L, SCHIRRA J J. Superalloys 2000. Champion PA: TMS, 2000: 737–746.

- [16] SOCRATE S, PARKS D M. Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys[J]. Acta Metallurgica et Materialia, 1993, 41(7): 2185–2209.
- [17] NATHAL M V, MACKAY R A. The stability of lamellar *y-y'* structures[J]. Materials Science and Engineering A, 1987, 85: 127–138.
- [18] 陈晶阳, 曹腊梅, 冯 强. 应力对一种含 Ru 镍基单晶高温合金组织稳定性的影响[J]. 材料科学与工艺, 2008, 16(S1): 80-85.
 - CHEN Jing-yang, CAO La-mei, FENG Qiang. Effect of stress on the microstructural stability of a Ru-containing Ni-base single crystal superalloy[J]. Materials Science and Technology, 2008, 16(S1): 80–85.
- [19] MURAKUMO T, KOBAYASHI T, KOIZUMI Y, HARADA H. Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction[J]. Acta Materialia, 2004, 52(12): 3737–3744.
- [20] CARROLL L J, FENG Q, POLLOCK T M. Interfacial dislocation networks and creep in directional coarsened

- Ru-containing nickel-base single-crystal superalloys[J]. Metallurgical and Materials Transactions A, 2008, 39(6): 1290–1307.
- [21] CARROLL L J, FENG Q, MANSFIELD J F, POLLOCK T M. High refractory, low misfit Ru-containing single-crystal superalloys[J]. Metallurgical and Materials Transactions A, 2006, 37(10): 2927–2938.
- [22] CHEN J Y, ZHAO B, FENG Q, CAO L M. Effects of Cr on the stress rupture of Ni-based single crystal superalloys[C]// JOSEPH R, OMER D, DONNA B, SHIELA W. Warrendale PA: TMS, 2009: 233–240.
- [23] NATHAL M, EBERT L. Elevated temperature creep-rupture behavior of the single crystal nickel-base superalloy NASAIR 100[J]. Metallurgical and Materials Transactions A, 1985, 16(3): 427–439.
- [24] CARON P, HENDERSON P J, KHAN T, MCLEAN M. On the effects of heat treatments on the creep behaviour of a single crystal superalloy[J]. Scripta Metallurgica, 1986, 20(6): 875-880.

(编辑 李艳红)