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Reaction mechanism and kinetics of preparation of
aluminiume-silicon alloys by carbothermal reduction method

YANG Dong, FENG Nai-xiang, WANG Yao-wu, PENG Jian-ping, WANG Zi-gian, DI Yue-zhong

(School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China)

Abstract: The composition of products obtained under different temperatures in vacuum graphite furnace was studied by
XRD, and the reaction process of carbothermal reduction of Al,0; and SiO, was analysed by TG-DTA as well. Based on
these, the reaction mechanism of carbothermal reduction method was discussed. The kinetics of preparation of Al-Si
alloys by carbothermal reduction of Al,0; and SiO, was studied by means of differential temperature analysis (DTA) at
different temperature rising rates of 10, 15, 20 and 25 K/min. The results show that the carbothermal reduction process
can be divided into 4 stages, and the key stage is the formation and decomposition of carbides period. Among the 4
mechanisms of carbothermal reduction of Al,O; and SiO,, the formation and decomposition of carbides theory may be
the best one to interpret the reaction process. The apparent activation energy of each endothermic peak is obtained by
Flynn-Wall-Ozawa and Kissinger methods as follows: 848.9, 945.4, 569.7, 325.7, 431.9 and 723.1 kJ/mol, and the kinetic
equations are also determined. Meanwhile, the feasibility of the results of kinetics analysis is verified using the products
obtained in vacuum graphite furnace and arc furnace by XRF and infrared absorption carbon-sulfur analysis unit.
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Fig.1 XRD patterns of products at various temperatures in
vacuum graphite furnace: (a) 1 600 C; (b) 1 700 C; (c) 1 800
C; (d) 1900 C; (e) 2 000 ‘C
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Fig.2 TG-DTA curves for carbothermal reduction of Al,O;
and SiO,

2.1.3 MV HLER TS

T HRERGE SR, FEOCBE I e N0 3R N J W
(1), Bl: ALO;+ 3Si=2Al+3Si0(g), X[
GRIER 2 128 °C, AR SCHR[15], 1900 C ] LLIE
I RERGA LRI 48 AL, ASZIG MR BB b B
73R XRD AT HAFSE TiX— i, Wil 3 fos. (|
SEIH I X — BRR R I I LIE SR ALOS A Si0, 8L T
HATAT o X FBER N RN FE A SiC 1A e
ik 65.9 %I SiO, [M5% ¥ 254 24.7%(LLJ5UE Si0, ' Si
TCER NS, T UAE TR i 4 Si i,
FiAhs RINV(10) b s (1) BE 2 5 04T, TRk J W (10)
TR N, ARG R nT A R AT

% L+ — AlLO;
. S]Og
v " —Sj
+— Aly5Sigy;
*— Al
* — Si0

20 30 40 S0 60 70 80
20/(°)

3 ERGE AL BT A ) XRD 1%
Fig.3 XRD pattern of products obtained by silicon thermal
reduction of Al,O3
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Fig.4 DTA curves of carbothermal reduction reaction at

different heating rates: (a) 10 K/min; (b) 15 K/min; (c) 20

K/min; (d) 25 K/min
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Table 1 DTA peak temperatures of carbothermal reduction

reaction at different heating rates

BIKmin ") Tp/K Tuo/K To/K Toa/K  Tus/K  Twg/K
10 1224 1342 1688 1861 1976 2111
15 1228 1347 1698 1886 1998 2125
20 1232 1352 1711 1912 2022 2141
25 1237 1356 1719 1939 2042 2156
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Table 2 Activation energies (E) and linear related coefficients () of endothermic peaks obtained by FWO method
E\/(kJ-mol™") " E,/(kJ-mol™) s E3/(kI'mol™) r3
837.6 —0.983 932.8 —0.996 637.9 —0.991
E4/(kJ-mol™) Ty Es/(kI'mol™) rs E¢/(kI'mol™) re
333.0 —0.990 437.2 —0.994 722.2 —0.988
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Fig.5 Relationship between lg f and 1/T, at different heating rates for very peaks: (a) Peak 1; (b) Peak 2; (c) Peak 3; (d) Peak 4; ()

Peak 5; (f) Peak 6
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Table 3  Activation energies (E), frequency factor (4) and linear related coefficients () of endothermic peaks obtained by Kissinger

method
EJ/(kJmol™)  In(4,/min) " Ex/(kJmol™)  In(4y/min) I Ey/(kJmol™)  In(4y/min) r3
860.2 84.23 -0.983 957.9 85.43 -0.996 501.5 34.25 —0.937
EJ(kJmol™)  In(44/min) Fa Es/(kFmol™)  In(45/min) rs E¢/(kFmol™)  In(4¢/min) re
318.4 18.43 -0.988 426.6 23.98 -0.993 723.9 39.67 —0.988
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Table 4  Average activation energies calculated using FWO and Kissinger methods

Method E\/(kI'mol ™) E,/(kJ-mol™") E3/(kI'mol ™" E,/(kI'mol ™) Es/(kI'mol ") E¢/(kI'mol ™"
FWO 837.6 932.8 637.9 333.0 437.2 722.2
Kissinger 860.2 957.9 501.5 318.4 426.6 723.9
Average 848.9 945.4 569.7 325.7 431.9 723.1
F5  AFINAEAR T RETER T 1A N ZE n
Table 5 Peak shape index (/) and reaction order (1) at different heating rates
/)’/(K-minfl) Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6
n 1 n 1 n 1 n 1 n 1 n
10 1.107 1.326  1.102  1.323 0913 1.203 1.108  1.326 0.813 1.107  0.834 1.107
15 1.008 1.265 1.242 1404 0943 1.224 0912  1.203 0.816 1.138 0912 1.203
20 1.101 1.322 1.103  1.323 0.915 1.205 1.112  1.329 0.837 1.153  0.811 1.135
25 1.119 1.333  1.218 1.391 0.921 1.209  0.895 1.192 0.807 1.132  0.813 1.136
Average 1.084 1.308 1.166 1360 0923 1.210 1.007  1.263 0.818 1.133  0.843 1.145
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Table 6 Main composition of samples obtained in vacuum

graphite furnace and arc furnace

Furnace w(Al)/% w(Si)/% w(SiC)/% w(Others)/%
Vacuum 12.5 112 419 34.4
graphite
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3) AFETHEE A DTA #HiZkiltzn], B4R
N FEYIAEAE 6 AN, 6 /MU IT A PR S LK
04 1220~1 240, 1 340~1 360+ 1 680~1 730, 1 850~
1950, 1970~2 050 12 100~2 160 K;

4) FIF FWO A1 Kissinger 23 8 7 B Pid Jgi it
Pt rp AR TR M A e, BRI IRS 2 2OUE
TRBEM I A 848.9. 945.4. 569.7. 325.7. 431.9 F1 723.1
kJ/mol. M H Kissinger {5353 TR [NV EL
MR K7 S LB ) 22 S5, e T RINE) )%
JiRE, R EAR T, A5G B S X LR
HL I 5206 5 SRR AN AIE 1 8 24 St Bl 4T
P,
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