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Plastic flow characteristics and physical conception
constitutive relation for AZ31 cast magnesium alloy

SU Jing, GUO Wei-guo, HE Ke-xin, GE Yu-zhuo

(School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract: The plastic flow properties of cast magnesium alloy AZ31 were studied at different strain rates and
temperatures by using quasi-static testing machine and Hopkinson pressure bar equipment. The microstructure analysis of
deformed specimen was carried out by means of the metallography microscope technique. The results show that, at lower
strain rates, the transformation of AZ31 alloy from brittleness to toughness occurs with increasing temperature, and the
transformation temperature is about 473 K. The brittleness phenomenon happens with increasing strain rate to 1.2 10*
s”', and the plastic deformation capability becomes weak. Based on the microstructure analysis, the key factor of the
plastic deformation enhancement at low strain rates is due to the existence of twinning in the crystal. At higher stain rates,
however, the dynamic recrystallization and second phase particle precipitation hardness strongly affect the metal
plasticity. Based on the thermal activation dislocation mechanism, paralleled with the system testing results, a plastic flow
constitutive model with the physical conception was established. The model was used to predict the plastic flow stress at
different temperatures and higher strain rates. According to comparing results, good agreement between the model
predictions and experimental results is obtained.
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Table 1 Chemical composition of AZ31 magnesium alloy
(mass fraction, %)
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3.19 0334 0.81 0.005 0.02 0.01 0.005 Bal
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Fig.1 True stress—strain curves of AZ31 magnesium alloy at

different strain rates: (a) 1.0X 107 s ' (b) 1.0X 10" s™!
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Fig.2 True stress—strain curves of AZ31 magnesium alloy at
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Fig.3 True stress—strain curves of AZ31 magnesium alloy at

strain rate of 1.2X 10* ™!
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Fig.4 True stress—temperature curves of AZ31 magnesium
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Fig.5 True stress—strain rate curve of AZ31 magnesium alloy

at initial temperature of 373 K and fixed true strain of 7.5%
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Fig.6 Microstructures of AZ31 magnesium alloy under different testing conditions: (a) 7=83 K, £=1.0X10" s, &=10%; (b) T=
373K, £=1.0X107s", e=11%; (c) =573 K, £=1.0X107s", &=30%; (d) T=523 K, £=1.0X10"s"! &=40%
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Fig.7 Microstructures of AZ31 magnesium alloy at high
strain rates: (a) 7=523 K, &=1.0X10°s"', &=12%; (b) T=523
K, £=5.0X10°s!, &=16%; (c) T=523 K, £=1.2X10*s",
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