文章编号: 1004-0609(2010)11-2162-06

造孔剂对无压熔渗 SiC_n/Al 复合材料的 组织和导热性能的影响

王庆平^{1,2,3}, 吴玉程^{1,3}, 盘荣俊¹, 洪雨¹, 闵凡飞²

(1. 合肥工业大学 材料科学与工程学院, 合肥 230009; 2.安徽理工大学 材料科学与工程学院, 淮南 232001; 3. 安徽省有色金属材料与加工工程实验室,合肥 230009)

摘要:利用无压浸渗法制备高体积分数的SiCp/Al复合材料,采用X射线衍射(XRD)、扫描电镜(SEM)和能谱(EDS) 对预制块和复合材料的相组成及微观组织进行分析,研究不同造孔剂对复合材料导热性能的影响。结果表明:在 900 ℃时,以 Fe(NO₃);•9H₂O 为造孔剂制备的复合材料组织均匀,致密度好,无明显气孔缺陷,界面反应产物为 Mg₂Si、MgAl₂O₄和 Fe; 以 Ni(NO₃)₂·6H₂O 为造孔剂制备的复合材料致密度差,有明显气孔缺陷,界面反应产物 为 Mg₂Si、MgAl₂O₄和 NiO, 且热导率和相对密度均低于以 Fe(NO₃)₃·9H₂O 为造孔剂制备的复合材料的,其原因 是 Fe₂O₃和铝液发生铝热反应改善基体和 SiC 的润湿性,从而提高复合材料的致密度。

关键词:造孔剂; SiC_p/Al 复合材料; 无压浸渗; 微观组织; 热导率 中图分类号: TG146 文献标志码: A

Effect of pore-forming agent on microstructure and thermal conductivity of SiC_p/Al composites prepared by pressureless infiltration

WANG Qing-ping^{1, 2, 3}, WU Yu-cheng^{1, 3}, PAN Rong-jun¹, HONG Yu¹, MIN Fan-fei²

(1. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China;

2. School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China;

3. Nonferrous Metals Materials and Process Engineering Laboratory of Anhui Province,

Hefei University of Technology, Hefei 230009, China)

Abstract: The high volume fraction SiC₀/Al composites were prepared by pressureless infiltration, and the effects of Fe(NO₃)₃·9H₂O and Ni(NO₃)₂·6H₂O on thermal conductivity of the composites were studied. The microstructures of the SiC porous preforms and the composites sintered at 900 °C were characterized by XRD, SEM and EDS. The results show that the microstructures of $SiC_p/Al-10Si-8Mg$ composite with $Fe(NO_3)_3 \cdot 9H_2O$ as pore-forming agent are more homogeneous than those with Ni(NO₃)₂·6H₂O pore-forming agent, and the compactness of the former is higher than that of the latter. The interfacial reactive products are Mg₂Si, MgAl₂O₄ and Fe for the former whereas are Mg₂Si, MgAl₂O₄ and NiO obtained for the latter. Moreover, the thermal conductivity and relative density of the composite with $Ni(NO_3)_2 \cdot 6H_2O$ as pore-forming agent are lower than those with $Fe(NO_3)_3 \cdot 9H_2O$. The reason of these differences may be the thermite reaction in Fe_2O_3 and Al system occurred, which improves the wetting property, and therefore higher density composite can be achieved.

Key words: pore-forming agent; SiC_p/Al composite; pressureless infiltration; microstructure; thermal conductivity

SiC_p/Al 复合材料由于具有比强度高、比模量高、 领域^[1-2]。而在用作电子封装方面,与低体积分数的 耐磨性好、热导率高、热膨胀系数低等优异性能,而 被广泛应用于航空、航天、军事武器、汽车、电子等

SiC_p/Al 复合材料相比,高体积分数的 SiC_p/Al 复合材 料具有更小的热膨胀系数、更高的热导率和稳定的尺

基金项目: 安徽省自然科学基金资助项目(070414180); 合肥工业大学创新群体基金资助项目(103-037016); 安徽省教育厅自然科学基金资助项目 (KJ2007B0272)

收稿日期: 2009-12-09; 修订日期: 2010-04-16

通信作者:吴玉程,教授,博士;电话: 0551-2901012; E-mail: ycwu@hfut.edu.cn

寸等优点而特别受到关注^[3-5]。

SiC 颗粒和铝合金熔液的性质差异很大,在通常 情况下两者是很难浸润复合的。只有对两者进行适当 的处理才能达到浸润的目的。对 SiC 颗粒进行预处理 的方法有多种,如表面涂层法^[6]、有机处理、预烧结 处理和超声清洗等[7-8]。但试验发现,这些方法工艺复 杂,且有的效果也不太理想。通过研究选取不同造孔 剂,加热后使得在 SiC 颗粒之间及表面生成一种有利 于浸渗的物质,且该物质能够阻止 SiC 颗粒氧化,采 用这种方法对 SiC 颗粒进行处理。另外,基体合金的 处理目前主要是在基体合金熔液中引入适量的 Si 和 Mg, 对改善SiC_n与铝合金熔液的浸润性也是必要 的^[9]。本文作者采用无压浸渗法制备高体积分数的 SiC_n/Al 复合材料,并采用 X 射线衍射(XRD)和扫描电 镜(SEM)对预制块和复合材料的相组成及微观组织进 行分析,研究不同造孔剂对复合材料热导率性能的影 响。

1 实验

以工业磨料用 SiC(粒径为 85 μm 与 28 μm 的粒子 质量比为 2:1)和造孔剂 Fe(NO₃)₃·9H₂O 和 Ni(NO₃)₂·6H₂O 为主要原料,造孔剂和 SiC 的质量比 见表 1。采用硬脂酸锌作为润滑剂,硅油作为粘接剂。 将上述原料按设计比例分组在球磨机上混合 5 h,然 后,在手动陶瓷压片机上以 100 MPa 的压力压制成形。 素坯经 60 ℃干燥处理后在箱式空气电阻炉中 1 000 ℃ 下烧结,随炉冷却至室温。以 Al-10%Si-8%Mg(质量 分数)合金为基体在 900 ℃进行浸渗,充氮气保护,随 炉冷却,重熔后获得 SiC 质量分数为 65%的复合材料。 将测试热导率的试样加工成 *d*10 mm,厚度 1~2 mm, 用激光闪烁器辐照后加热圆片样品的一面,并在样品 的另一面检测到温度的响应曲线,可直接测试样品的 热扩散系数(*a*)和空压比热容(*c*_{*p*})。热导率由下列公式 计算得到: *λ=αc_p*

表1 造孔剂和 SiC 粉末的质量比

 Table 1
 Mass ratio of pore-forming agent and SiC powder

Sample No.	Mass fraction of pore-forming agent/%	w(SiC)/%
1	5	95
2	10	90
3	15	85
4	20	80
5	15	85
6	30	70

采用 D/max-r B 型 X 射线衍射仪(XRD)分析预制 块和复合材料的物相组成,利用 JSM-6490LV 和 HITACHI S-3000N 型扫描电子显微镜观察预制块和 复合材料的微观组织及能谱(EDS),利用日本真空理 工株式会社 TC-7000 激光热常数分析仪测试复合材 料的热导率,利用排水法测定预制块的孔隙率和复合 材料的密度。

2 结果与分析

2.1 SiC 预制块的物相组成及组织形貌

图 1 所示为加 Fe(NO₃)₃·9H₂O 和 Ni(NO₃)₂·6H₂O 的预制块烧结后的 XRD 谱。烧结 SiC 陶瓷骨架的 X 衍射分析表明,在预定的烧结温度下陶瓷骨架中有 SiC 和其表面氧化生成结晶态的 SiO₂ 及造孔剂生成的 Fe₂O₃ 或 NiO 存在,无其它残留。SiO₂ 氧化膜在无压 浸渗制备 SiC/Al 复合材料中起着至关重要的作用,Fe₂O₃ 或 NiO 的存在也起到重要的作用,Fe₂O₃ 或 NiO 的存在也起到重要的作用,Fe₂O₃ 或 NiO 的存在也起到重要的作用,Fe₂O₃ 或 NiO 的存在也起到重要的作用,Fe₂O₃ 或 NiO 的存在也起到重要的作用,Ge之强度的 陶瓷骨架,且在随后工序中,能通过液-固界面反应, 有效改善 SiC 与 Al 液之间的润湿性^[10-11],促使 Al 液 自发向 SiC 多孔陶瓷中渗入。同时,由于 SiO₂ 氧化膜 和 Fe₂O₃ 或 NiO 膜的存在,保护其内部的 SiC 无法与 铝液直接接触,避免有害物 Al₄C₃ 的形成。

图1 以 Fe(NO₃)₃·9H₂O 和 Ni(NO₃)₂·6H₂O 为造孔剂烧结 SiC 骨架的 XRD 谱

Fig.1 XRD patterns of SiC skeletons sintered with $Fe(NO_3)_3$ · $9H_2O$ (a) and $Ni(NO_3)_2$ · $6H_2O$ (b) as pore-forming agent

图 2 所示为加入 Fe(NO₃)₃·9H₂O(质量分数为 10%) 的 SiC 预制块的断口形貌及 EDS 分析。从图 2(a)可以

看到, SiC 颗粒棱角分明,很好地维持最初始的外形, 彼此紧密地堆积在一起,表面与孔隙之间有较小颗粒 (粒径在 1~5 μm)存在,由图 2(b)和(c)可知小颗粒为 Fe₂O₃。从图 2(a)还可以看出,加入 Fe(NO₃)₃·9H₂O 后, SiC 预制块的孔洞分布较为均匀,孔径大小也较为均 匀(为 5 μm 左右),Fe₂O₃颗粒附着在 SiC 表面。从图 2(b)可以看出,氧化生成的 SiO₂和 Fe₂O₃起到连接颗 粒的作用(见图 2(b)中的箭头),从而使得预制块有一 定强度,阻止其在烧结和渗铝过程中坍塌。

图 2 SiC 预制块的断口形貌(10% Fe(NO₃)₃·9H₂O) Fig.2 Fracture morphologies (a), (b) and EDS analysis (c) of SiC preform(10% Fe(NO₃)₃·9H₂O)

图 3 所示为加入 Ni(NO₃)₂·6H₂O(质量分数为 10%) 预制块烧结后的断口形貌。从图 3(a)可以看出,有较 大孔存在且分布不均,存在团聚现象,有可能是 Ni(NO₃)₂·6H₂O 在混料过程中团聚造成的,生成的 NiO 存在于 SiC 颗粒之间及表面,在 SiC 颗粒表面有约 1 μm 厚的薄层生成,使得 SiC 颗粒表面变得非常光滑 (见图 3(b)箭头)。SiC 具有较高的弹性模量和较强的耐 高温性能,在压制成形和低温烧结过程中基本不发生 变形,能很好地保证粉体间形成孔隙的连通性,最终 构成三维空间互通的开放间隙网络。

图 3 SiC 预制块的断口形貌(10% Ni(NO₃)₂·6H₂O) Fig.3 Fracture morphologies of SiC preform(10% Ni(NO₃)₂·6H₂O): (a) Low magnification; (b) High magnification

2.2 造孔剂含量对 SiC 预制块孔隙率的影响

在配料中加入 Fe(NO₃)₃·9H₂O 和 Ni(NO₃)₂·6H₂O, 这些物质由于颗粒较细小可以填充在紧密堆积 SiC 颗 粒间隙形成的孔隙中,在加热分解后在预制块中留下 孔隙,从而可制备出孔隙率接近 24%的多孔预制块。 多孔预制块中的孔隙最终被铝填充,其数量(体积分 数)、形状与分布决定了复合材料中铝的体积分数与分 布。因此,预制块的孔隙率直接决定复合材料的组织 和性能。

预制块中造孔剂的质量分数与多孔预制块孔隙率 关系如图 4 所示。从图 4 可以看出,以 Fe(NO₃)₃·9H₂O 为造孔剂的孔隙率大于 Ni(NO₃)₂·6H₂O 的,且多孔预 制块的孔隙率随造孔剂含量的增加进一步提高孔隙率 的趋势逐渐减小。这是因为造孔剂存在于紧密堆积的 SiC 颗粒间隙形成的孔隙中,生成的 Fe₂O₃或 NiO 填 充在孔隙中,占有一定孔洞,随着造孔剂含量的增加,

生成的 Fe₂O₃ 或 NiO 也增多,占有的孔隙也就多,从 而使得预制块的孔隙率略有下降。当预制块中造孔剂 的质量分数大于 10%时,多孔预制块的孔隙率略有下 降但变化不明显,为了避免过多 Fe₂O₃ 或 NiO 的存在, 降低复合材料的热学性能,因此,在浸渗过程中选用 造孔剂为 10%的预制块作为素坯。

2.3 复合材料的微观形貌及物相分析

图 5 所示为 SiC_p/Al 复合材料的 XRD 谱。对于无 压浸渗 SiC_p/Al 复合材料体系,在高温下增强体 SiC 与基体 Al 合金之间会发生界面反应,它对复合材料的 微观组织和宏观性能起关键作用。对 SiC_p/Al 系统界 面反应的研究表明,在铝的熔点以上,SiC 即可与熔 融铝合金液发生界面反应生成各种不同的化合物,如 Mg₂Si 和 MgAl₂O₄等。图 5(a)所示为 Fe(NO₃)₃·9H₂O 作造孔剂的复合材料的 XRD 谱。结果表明:复合材 料中除了 SiC 增强相、Si 和 Al 基体外,还有 Mg₂Si、 MgAl₂O₄ 和 Fe 等。分析发现当基体中含有 Mg 时, Mg 会和 Al₂O₃发生反应^[12-13],从而使得该复合材料中 不含 Al₂O₃:

$$\begin{split} & \text{Mg (l)}+\text{Al}_2\text{O}_3(s) \longrightarrow \text{MgO}(s) + \text{Al(l)} \\ & \text{Mg(l)}+\text{Al(l)}+2\text{O}_2 \longrightarrow \text{MgAl}_2\text{O}_4(s) \\ & \text{Mg (l)}+\text{Al}_2\text{O}_3(s) \longrightarrow \text{MgAl}_2\text{O}_4(s) + \text{Al(l)} \end{split}$$

由图 5(a)可以看出,复合材料中存在 Fe 相,说明 铝液和 Fe₂O₃ 在 900 ℃时发生了铝热反应: Al+ Fe₂O₃→Al₂O₃+Fe。该反应是放热反应,瞬间温度超 过 2 000 ℃,降低了 Al 和 SiC 的润湿角^[14-15],对基体 的浸渗起到一定的促进作用。而从图 5(b)中可看出, 造孔剂以 NiO 的形式存在,对基体的浸渗贡献不大。

图 5 SiC_p/Al 复合材料的 XRD 谱

Fig.5 XRD patterns of SiC_p/Al composites with different pore-forming agents: (a) $Fe(NO_3)_3 \cdot 9H_2O$; (b) $Ni(NO_3)_2 \cdot 6H_2O$

同时,由图 5(a)和(b)可看出 2 种复合材料中均无有害相 Al₄C₃ 生成。

图 6(a)和(b)所示为以 Fe(NO₃)₃·9H₂O 为造孔剂无 压浸渗制备的 SiC_P/Al 复合材料的 SEM 像。图 6(a)和 (b)中灰色的颗粒状物质为 SiC 颗粒,白色部分为铝基 体。由图 6(a)和(b)可以看出,SiC 颗粒基本呈均匀随 机分布,没有发现明显堆积现象,致密度较好。图 6(c) 所示为以 Ni(NO₃)₂·6H₂O 为造孔剂制备的复合材料的 SEM 像。由图 6(c)可知,试样致密度较差,有明显的 气孔存在,说明浸渗效果差;在 SiC 增强相的周围边 界处有少量深黑色物质存在,表明无压浸渗所得 SiC_p/Al 复合材料有界面反应现象的发生。同时,SiC 颗粒与基体之间的界面清晰,结合良好,未发现与基 体的脱粘现象:表明本实验以 Fe(NO₃)₃·9H₂O 为造孔 剂能够得到较致密的 SiC 颗粒增强铝基复合材料。由 EDS 结合 XRD 可知,复合材料中白色亮点为还原生 成的单质 Fe(见图 6(d))。

图 6 含不同造孔剂 SiC_p/Al 复合材料的 SEM 像及 EDS 分析

Fig.6 SEM images and EDS analysis of SiC_p/Al composites with different pore-forming agents: (a), (b) SEM images, $Fe(NO_3)_3 \cdot 9H_2O$; (c) SEM image, $Ni(NO_3)_2 \cdot 6H_2O$); (d) EDS analysis of zone 1

图 7 复合材料的热导率和相对密度

Fig.7 Thermal conductivity and relative density of composites

2.4 复合材料的热导率

图 7 所示为 2 种复合材料的热导率及相对密度。 以 Fe(NO₃)₃·9H₂O 为造孔剂所得复合材料的热导率为 123 W/(m·K),相对密度为 92%,高于以 Ni(NO₃)₂·6H₂O 为造孔剂所得复合材料的热导率(100 W/(m·K)和相对 密度(83%)。

根据 Hasselman 理论预测模型^[13],复合材料的热导率与基体的热导率和复合材料的孔隙度的关系可以表示为

$$K_{\rm c} = K_{\rm m} \frac{1 - V_{\rm d}}{1 + 0.5 V_{\rm d}}$$

式中: K_c 为复合材料的热导率; K_m 为基体的热导率; V_d 为复合材料的孔隙度。 K_c 与 K_m 呈线性增长的关系, 随着 V_d 的增大而减小。复合材料孔隙的出现可能源于 多方面的因素, 如浸渗过程陷入气泡、润湿性差以及 Al 液与 SiC 冷却收缩不一致造成的缩孔等。

基体合金元素 Si 和 Mg 对浸渗均有贡献,有资 料^[12]表明,温度对基体和 SiC 之间的润湿性有重要影 响,温度越高,润湿性越好。以 Fe(NO₃)₃·9H₂O 为造 孔剂,在浸渗过程中和基体发生铝热反应,瞬间温度 超过 2 000 ℃,合金对 SiC 的润湿性大幅度提高,因 此,浸渗更加完全,复合材料的残留孔隙度较低,从 而使得复合材料的热导率和相对密度都较高。Fe₂O₃ 使残余气孔减少从而导致热导率的升高值大于因 Fe₂O₃的存在而导致复合材料热导率的降低值,而 NiO 的存在则没能起到 Fe₂O₃ 的作用,所以,其复合材料 的热导率和相对密度均较低。

3 结论

1) Fe(NO₃)₃·9H₂O 和Ni(NO₃)₂·6H₂O 高温分解生成的 Fe₂O₃ 和 NiO 在 SiC 骨架内分布均匀,起到连接 SiC

粉体和阻止 SiC 被氧化的作用, NiO 略有偏聚现象。

2) 以 Fe(NO₃)₃·9H₂O 为造孔剂制备的复合材料组 织均匀,致密度好,无明显气孔缺陷,界面反应产物 为 Mg₂Si、MgAl₂O₄和 Fe;以 Ni(NO₃)₂·6H₂O 为造孔 剂制备的复合材料致密度差,有明显气孔缺陷,界面 反应产物为 Mg₂Si、MgAl₂O₄和 NiO。

3) 以 Fe(NO₃)₃·9H₂O 为造孔剂所得复合材料热导 率和相对密度均较高,其原因是由于 Fe₂O₃ 和铝液发 生铝热反应改善了复合材料和 SiC 的润湿性,促进了 浸渗的完成,提高了复合材料的致密度。

REFERENCES

- SHEN Xiao-yu, REN Shu-bin, HE Xin-bo, QIN Ming-li, QU Xuan-hui. Study on methods to strengthen SiC preforms for SiCp/Al composites by pressureless infiltration[J]. Journal of Alloys and Compounds, 2009, 468(1/2): 158–163.
- [2] ZWEBEN C. Advanced electronic packaging materials[J]. Advanced Materials & Processes, 2005, 163(10): 33–37.
- [3] REN Shu-bin, HE Xin-bo, QU Xuan-hui, LI Yan. Effect of controlled interfacial reaction on the microstructure and properties of the SiC_p/Al composites prepared by pressureless infiltration[J]. Journal of Alloys and Compounds, 2008, 455(1/2): 424–431.
- [4] REN Shu-bin, HE Xin-bo, QU Xuan-hui, HUMAIL I S, LI Yan. Effect of Si addition to Al-8Mg alloy on the microstructure and thermo-physical properties of SiC_p/Al composites prepared by pressureless infiltration[J]. Materials Science and Engineering B, 2007, 138(3): 263–270.
- [5] LIU Jun-wu, ZHENG Zhi-xiang, WANG Jian-min, WU Yu-cheng. Pressureless infiltration of liquid aluminum alloy into SiC preforms to form near-net-shape SiC/Al composites[J]. Journal of Alloys and Compounds, 2008, 465(1/2): 239–243.
- [6] 汤文明,郑治祥,丁厚福. SiC 表面固相反应涂层[J]. 矿冶工 程, 2001, 21(1): 69-76 TANG Wen-ming, ZHENG Zhi-xiang, DING Hou-fu. Coating on SiC surface by solid state reaction with Cr powder[J]. Mining and Metallurgical Engineering, 2001, 21(1): 69-76.
- [7] 郭 建, 刘秀波. SiC 颗粒加热预处理工艺对 SiC/Al 复合材料 制备的影响[J]. 材料热处理学报, 2006, 27(1): 20-23.
 GUO Jian, LIU Xiu-bo. Effect of pre-heating processing of SiC particles on porosity of SiC/Al composites[J]. Transactions of Materials and Heat Treatment, 2006, 27(1): 20-23.

- [8] 李子全, 吴炳尧. SiCp/ZA-27 复合材料 SiC 颗粒预处理工艺研究[J]. 南京大学学报: 自然科学版, 2000, 36(4): 479-485. LI Zi-quan, WU Bing-yao. On the pretreatment technology of SiC particles for fabrication of SiC/ZA-27 composites[J]. Journal of Nanjing University: Natural Sciences, 2000, 36(4): 479-485.
- [9] REN Shu-bin, HE Xin-bo, QU Xuan-hui, HUMAIL I S, LI Yan. Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiC_p/Al composites[J]. Composites Science and Technology, 2007, 67(10): 2103–2113.
- [10] 张 强,陈国钦,武高辉,姜龙涛,栾伯峰.含高体积分数 SiC_p的铝基复合材料制备与性能[J].中国有色金属学报, 2003,13(5):1180-1183.
 ZHANG Qiang, CHEN Guo-qin, WU Gao-hui, JIANG Long-tao, LUAN Bo-feng. Fabrication and property of SiC_p/Al composites with high content of SiC[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(5): 1180-1183.
- [11] 刘君武,郑治祥,吴玉程,王建民,汤文明,吕 珺,徐光青. 近净成形制备 SiCp/Al 复合材料II: SiC 预成形坯自发熔渗
 Z101[J]. 中国有色金属学报,2007,17(12): 2023-2028.
 LIU Jun-wu, ZHENG Zhi-xiang, WU Yu-cheng, WANG Jian-min, TANG Wen-ming, LÜ Jun, XU Guang-qing.
 Fabrication of SiC/Al composites with near-net-shapeII: Spontaneous infiltration of Z101 into SiC preforms[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(12): 2023-2028.
- [12] PECH-CANUL M I, KATZ R N, MAKHLOUF M M. Optimum parameters for wetting silicon carbide by aluminum alloys[J]. Metallurgical and Materials Transactions A, 2000, 31A: 565–573.
- [13] 王庆平,吴玉程,洪雨,盘荣俊,闵凡飞. 含高体积分数 SiCp 的 Al 复合材料微观组织及弯曲性能[J]. 中国有色金属学报, 2010, 20(2): 239-243.
 WANG Qing-ping, WU Yu-cheng, HONG Yu, PAN Rong-jun, MIN Fan-fei. Microstructures and bending properties of Al composites with high volume fraction of SiC_p[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(2): 239-243.
 [14] PECH-CANUL M I, KATZ R N, MAKHLOUF M M. The role
- [14] PECH-CANUL M I, KAIZ R N, MAKHLOUF M M. The role of silicon in wetting and pressureless infiltration of SiC preforms by aluminum alloys[J]. Journal of Materials Science, 2000, 35: 2167–2173.
- [15] ZULFIA A, HAND R J. The production of Al-Mg alloy/SiC metal matrix composites by pressureless infiltration[J]. Journal of Materials Science, 2002, 37: 955–961.

(编辑 杨 华)