文章编号: 1004-0609(2010)10-1982-07

La₂O₃对 WC-MgO 复合材料组织和力学性能的影响

张 祎¹,马 俊^{1,2,3},狄 平¹,朱世根^{1,2,3}

(1. 东华大学 机械工程学院,上海 201620; 2. 东华大学 纺织装备教育部工程研究中心,上海 201620;3. 东华大学 材料科学与工程学院,上海 201620)

摘 要: 以高能球磨法制备的 WC-MgO 复合粉末为原料,研究稀土氧化物(La₂O₃)添加量对 WC-MgO 复合粉末热 压烧结块体的组织和力学性能的影响,采用 XRD、SEM 和 SPM 对复合材料的结构特征进行表征,并讨论稀土氧 化物(La₂O₃)对颗粒增韧复合材料热压烧结成形的影响。结果表明: La₂O₃ 的加入量为 0.1%(质量分数),可抑制烧 结过程中出现的脱碳现象、细化烧结组织,提高增韧颗粒分散均匀性和改善颗粒/基体界面形貌,使成形致密度达 理论密度的 98.56%,维氏硬度和断裂韧性分别为 18.02 GPa 与 12.38 MPa·m^{1/2};而添加过量 La₂O₃(≥0.25%,质量分 数),导致复合材料的成形性能降低。

关键词: WC-MgO; La₂O₃; 热压烧结; 显微组织; 力学性能
 中图分类号: TF124; TF125.3; U214.8⁺2
 文献标志码: A

Effects of La₂O₃ on microstructures and mechanical properties of hot-pressing sintered WC-MgO composite material

ZHANG Yi¹, MA Jun^{1, 2, 3}, DI Ping¹, ZHU Shi-gen^{1, 2, 3}

(1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China;

2. Engineering Research Center of Advanced Textile Machinery,

Ministry of Education, Donghua University, Shanghai 201620, China;

3. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China)

Abstract: The WC-MgO composite powder synthesized by high-energy ball milling was used as raw material. A detailed investigation was carried out into the influence of rare earth (RE) oxide (La₂O₃) contents on the microstructure and mechanical properties of the as-consolidated WC-MgO bulk composites prepared by hot-pressing sintering method (HPS). The effective mechanisms of rare earth material (La₂O₃) in hot-pressing sintered composite were discussed. The results show that, by addition of 0.1% La₂O₃, the sintered structure can be refined, the decarburization reaction can be suppressed, the reinforcing particulates can be homogeneously refined, and the particulate and matrix bonding can be improved, leading to a high relative density of 98.56%, while the hardness is 18.02 GPa and the fracture toughness is 12.38 MPa·m^{1/2}. However, an excessive addition of La₂O₃ ($\geq 0.25\%$) results in the decrease of the hot-pressing sintering ability.

Key words: WC-MgO; La₂O₃; hot-pressing sintering; microstructure; mechanical properties

钨基硬质合金因其硬度高、高温抗氧化和耐腐蚀 好,成为工业技术领域中不可缺少的工具材料、涂层 材料和结构材料^[1]。但由于纯 WC 的抗冲击性能和断 裂韧性较低,很难将纯 WC 用于工业应用。研究表明^[2], Co 对 WC 具有良好的润湿性和粘结性,目前将 Co 作为粘结剂来改善 WC 的综合力学性能。

基金项目: 上海市重点学科建设资助项目(B062)

收稿日期: 2009-10-21; 修订日期: 2010-04-02

通信作者:朱世根,教授,博士;电话: 021-67792813; E-mail: sgzhu@dhu.edu.cn

添加 Co 这类金属粘结剂会直接影响材料的硬度, 有部分研究^[3]围绕着减少粘结剂添加量,甚至不使用 粘结剂来改善 WC 的性能。新型的复合材料 WC-MgO 就是其中的一种^[4],与微米级粒度和亚微米级粒度的 WC-Co 相比,WC-MgO 可以实现较高硬度和较高断 裂韧性的结合^[5-6]。

热压烧结是粉末冶金中的一种常用的烧结方法。 在烧结过程中,加热与施压同时进行,烧结装置也十 分简单。加热过程中,在压力的作用下,粉末活性的 提高,可以获得较致密和性能优良的块体材料。

热压烧结获得的 WC-MgO 复合块体与放电等离 子体烧结得到的块体相比,粉末的烧结性与块体的致 密度均有所降低,这主要是由于增韧颗粒发生团聚的 现象。深入研究发现,只要在 WC-MgO 复合粉末体 系中添加少量的稀土氧化物(La₂O₃),就可以显著提高 烧结产物的性能。本研究工作中,考察不同含量 La₂O₃ 对 WC-MgO 复合材料的显微组织与力学性能的影响, 并讨论稀土元素(La₂O₃)对颗粒增韧复合材料热压烧 结成形的影响。

1 实验

1.1 材料

实验材料主要如下: 纯度为 99.5%的 WC 粉末, 平均粒度为 75 µm; 纯度为 99.5%的 MgO 粉末,平均 粒度为 48 µm; 纯度为 99.5%的 La₂O₃粉末,不规则外 形,平均粒度为 16 µm。复合粉末采用机械合金化方 法制备,将 3 种粉末按 5 种不同质量比配置(见表 1), 并置于 QM-1SP4 行星式球磨机中合成(氩气保护,球 磨介质为硬质合金球,球料比为 10:1,转速为 350 r/min,球磨时间为 50 h)。

1.2 工艺

采用 ZT-40-20Y 型真空热压烧结炉, 在真空度

表1 原始粉末组成

Table 1 Primary powder constitution

Sample No	Mass fraction/%			
	WC	MgO	La ₂ O ₃	
1	92.00	8.0	0	
2	91.90	8.0	0.10	
3	91.75	8.0	0.25	
4	91.50	8.0	0.50	
5	91.00	8.0	1.00	

为 0.13 Pa、升温速度为 10 ℃/min、烧结温度为 1 650 ℃、压力为 39.6 MPa、保温时间为 90 min 的条件 下进行烧结实验(见图 1)。

图1 粉末烧结工艺曲线

Fig.1 Sintering cycle curve of powder system

热压烧结使用的模具直径为 d15 mm 的圆柱形高 强度石墨制成。在模具内腔与粉末之间垫有 0.2 mm 厚的石墨纸。烧结过程采用热电偶和红外仪联用的双 控温系统。

1.3 表征

热压烧结试样致密度利用 Archimedes 定律测算; 试样的物相用 Rigaku D/Max-2550PC 型X 射线衍射仪 (XRD) 分析 (CuK_α); 金相试样腐蚀剂选用含 K₃[Fe(CN)₆](10 g)、KOH(10 g)及蒸馏水(100 mL)的 Murakami 溶液,腐蚀时间为 5 min;试样的显微组织 用 NanoScope IV 型扫描探针显微镜(SPM)和 S-4800 型场发射扫描电镜(FE-SEM)的二次电子像(SE)和背 散射电子像(BSE)来表征;成分组成利用能谱仪(EDS) 表征;试样的硬度利用 HV-50Z 型维氏硬度计测定, 载荷为 490 N,保压时间为 10 s。试样断裂韧性由压 痕裂纹长度根据 Shetty 公式估算^[7]。取 10 次测量结果 的均值作为试样的硬度和断裂韧性。

2 结果与分析

2.1 稀土对 WC-MgO 复合材料力学性能的影响

不同La₂O₃添加量WC-MgO热压烧结试样的力学性能如表 2 所列。由表 2 可看出,烧结试样的硬度和断裂韧性受La₂O₃含量的影响显著。未添加La₂O₃时,WC-MgO复合块体试样维氏硬度值可达15.43 GPa,

断裂韧性为 9.58 MPa·m^{1/2};加入 0.1%的 La₂O₃时,不 但提高了热压烧结样品的致密度,同时块体的硬度也 增加,硬度可达 18.02 GPa。同时,根据维氏硬度压痕 裂纹(见图 2),用 Shetty 公式^[7](K_C =8.89×10⁻² $\sqrt{\frac{\text{Hv} \cdot F}{4a}}$, 式中: F 为硬度测量时载荷,N; \overline{a} 为压痕平均裂纹 长度,µm;Hv 为维氏硬度)。可估算其断裂韧性为 12.38 MPa·m^{1/2}。但继续提高 La₂O₃ 含量,由于烧结试样的 致密度下降,则维氏硬度和断裂韧性均有所降低。当 提高 La₂O₃ 含量至 1%时,硬度和断裂韧性仅为 9.69

GPa 和 6.22 MPa·m^{1/2}。

Table 2 Mechanical properties of hot-pressing sinteredsamples with different La_2O_3 contents

Sample No.	Sintering method	Relative density/%	Vickers hardness, HV/GPa	Fracture toughness, $K_{\rm IC}/({\rm MPa}\cdot{\rm m}^{1/2})$
1	HPS	94.56	15.43	9.58
2	HPS	98.56	18.02	12.38
3	HPS	97.13	17.39	10.84
4	HPS	95.43	17.37	9.38
5	HPS	86.74	9.69	6.22

图 2 热压烧结样品 2 维氏硬度压痕的 SEM 像

Fig.2 SEM image of Vickers hardness indentation of as-consolidated sample 2

2.2 稀土对 WC-MgO 复合材料物相的影响

图 3 所示为不同 La₂O₃ 含量复合粉末经热压烧结 后的 XRD 谱。从图 3 可见,WC(六方晶体)和 MgO(立 方晶体)的衍射峰比较强,热压烧结的主要材料是 WC 和 MgO。没有添加 La₂O₃(见图 3(a))和过量添加 La₂O₃ (≥0.25%)(见图 3(c)-(e))的样品均出现了 C 和 W₂C 的 衍射峰。出现 C 和 W₂C 主要是由于 WC 在烧结过程

图 3 不同 La₂O₃ 含量热压烧结试样的 XRD 谱 Fig.3 XRD patterns of samples 1(a), 2(b), 3(c), 4(d) and 5(e) after hot-pressing sintering

中出现脱碳现象(见式(1))。另外,由于球磨制备的粉 末比表面积比较大,表面吸附作用比较强,导致粉末 中吸附与储存的氧含量比较多。这种含氧量比较高的 粉末在烧结过程中会发生脱氧反应,同时发生脱碳反 应(见式(2)和(3))^[8]。研究^[9-11]表明,稀土原子的第一电 离能很小,吸附于晶界或相界处稀土原子的外层电子 容易发生偏移或部分脱离原子核的束缚,造成稀土原 子的极化。当适量添加 La₂O₃时,活性稀土元素会吸 附残存在粉末中的氧,使氧化脱碳无法进行,因此, 也就检测不到 C 和 W₂C 的衍射峰。但当稀土过量时, 极化的稀土元素增多,进入晶体内的极化稀土元素也 增多,这些极化稀土元素互相制约,应力场的综合作 用增大,形成壁垒阻碍原子进一步扩散,导致稀土元 素活性作用下降。在添加了不同质量比的 La2O3 的样 品(见图 3(b)~(e))中,还同时发现 La2O3 衍射峰的存在, 但由于只添加微量 La₂O₃,因此其衍射峰不强。

$2WC \longrightarrow W_2C+C$	()	1)
2		

$2C+O_{2} \longrightarrow 2CO^{\uparrow}$	(2)	۱
20102-200	(4)	,

 $2CO+O_2 \longrightarrow 2CO_2 \uparrow \tag{3}$

2.3 稀土对 WC-MgO 复合材料显微结构的影响

图 4 所示为不同 La₂O₃ 含量的试样经过抛光后所 得的显微组织。图 5 所示为 La₂O₃ 添加量对热压烧结 致密度的影响。从 EDS 能谱分析结果可知,图 4 中灰 色基体组织为 WC,而分散的黑色颗粒物质为 MgO。 对照图 4 与 5 可以看出,未添加 La₂O₃时,增韧颗粒 粗大(见图 4(a)),烧结试样的密度仅为理论密度的 94.56%;而添加 0.1% La₂O₃时,增韧颗粒更加细小、 均匀弥散地分布在 WC 的基体之中(见图 4(b)),致密

100

98

96

94

92

90

88

86

0

Relative density/%

团聚现象, 致密度为 95.43%(见图 4(d)); 当 La₂O₃含 量增加至1%时,致密度急剧降低至86.74%,烧结组 织中出现粗大的空隙和疏松(见图 4(e))。这就说明适量 的添加 La2O3(0.1%)有助于 WC 和 MgO 在界面上的结 合,从而提高材料的致密度。

La 是典型的稀土表面活性元素,有研究表明^[12], 稀土表面活性元素在晶体各晶面上的吸附量是不同 的。稀土元素在某些晶面上吸附, 既减小了晶体在这 些晶面上的表面自由能,也降低了这些晶面的生长速 率,使晶粒长大的驱动力减小^[13-15],有效地阻止 WC 和 MgO 晶粒间的聚晶长大。这样,随着 La₂O₃ 的合理 添加,能有效地减少晶粒团聚现象、细化晶粒,并最 终提高烧结样品的致密度[16-17]。

图 6 所示为不同 La₂O₃ 含量下热压烧结试样抛光 后的高倍显微组织。从图 6 可见, MgO 增韧颗粒在 WC基体中分散的均匀性受La2O3添加量的影响显著。 未添加La₂O₃时,增韧相颗粒形状不规则,且多以2μm

0.2

Fig.5 Change of relative density of hot-pressing sintered samples with La2O3 content

0.4

0.6

Mass fraction of La2O3/%

0.8

1.0

度也得到改善, 增至 98.56%; 当 La₂O₃ 的含量增加至 0.25%时,颗粒有所增大,但仍然可以保持弥散均匀 地分布在基体当中(见图 4(c)),此时致密度稍有降低,

以上的大颗粒团聚形式存在(见图 6(a));当 La₂O₃含量 为 0.1%时,增韧颗粒得到细化,降至 0.4 µm 左右(见 图 6(b)),其在基体的分散均匀性得以显著的提高;若 La₂O₃含量增加到 0.25%,此时虽然增韧颗粒尺度变化 不大,但增韧颗粒分散均匀性受到影响(见图 6(c));当 La₂O₃含量增加到 0.5%以上(见图 6(d)-(e))时,颗粒和 基体间产生明显的气孔与疏松。

图 7 所示为不含 La₂O₃ 和添加 0.1% La₂O₃ 热压烧 结试样中增韧颗粒的三维形貌。比较可以发现,没有 添加 La₂O₃ 时,样品表面参差不齐,布满了棱角与峰 面(见图 7(a))。添加 0.1% La₂O₃ 就可以极大地改善原 来样品的表面形貌,在样品上观察不到明显的棱角和 峰面,其微粒与基体间具有连续相容的界面形貌,且 过渡平缓圆滑(见图 7(b))。表明添加 0.1% La₂O₃后, 增韧颗粒 MgO 以超细均匀的形态分散于基体中。图 8 所示为不同 La₂O₃ 含量下热压烧结的试样腐蚀后的典 型显微组织。由图 8 可见,烧结组织中晶粒生长形态 以及增韧颗粒分散状态随 La₂O₃ 含量的变化有明显差 异。未添加时,增韧颗粒团聚严重并且晶粒粗大(见图 8(a)); 当添加 0.1% La₂O₃时,基体晶粒组织显著细化 (见图 8(b)); 随着 La₂O₃含量增加到 1%时,烧结成型 性能恶化,组织中晶粒明显粗化,甚至出现微裂纹(见 图 8(e))。

实验结果表明,La₂O₃添加量存在最佳值(0.1%)。 添加La₂O₃不可过量,若过量反而导致增韧颗粒团聚 且晶粒组织粗化,甚至出现气孔和疏松组织。当La₂O₃ 微量适宜时(0.1%),少数极化的稀土原子通过空位扩 散机制进入晶体内,造成晶格畸变,使材料的强度得 到提高。若过量添加La₂O₃,则使晶格畸变增多,畸 变的晶格造成局部能量增加,使其稳定性降低,并造 成晶粒粗大与团聚^[15,18]。因此,只有当烧结体系中稀 土含量微量适宜时,其活性作用才能充分发挥,对热 压烧结成形材料的改善效果才能最大化,并最终提高 材料的力学性能。

- 图 7 热压烧结试样 1 和 2 增韧颗粒的三维形貌
- Fig.7 SPM images of samples 1 and 2 showing 3-dimensional morphology of reinforcing particulates

结论 3

1) 优化La₂O₃添加量(0.1%)可提高WC-MgO复合

etching

材料的综合力学性能。经过热压烧结,其烧结致密度 度可达 98.56%, 硬度可达 18.02 GPa, 断裂韧性可达 $12.38 \text{ MPa} \cdot \text{m}^{1/2}$.

2) 当 La₂O₃添加量为 0.1%时,可阻碍 WC 基体 烧结过程中的脱碳反应,细化烧结组织,提高增韧颗

1988

粒分散均匀性,改善颗粒/基体界面形貌。

3) 过量添加 La₂O₃(≥0.25%),会因稀土元素的极 化效应导致其活跃性下降,热压烧结成型性能降低。

REFERENCES

- 高 勇, 唐振方, 黄景清, 郑家概. 纳米 WC-Co 复合材料制 备及其烧结过程[J]. 硬质合金, 2000, 17(1): 18-20.
 GAO Yong, TANG Zheng-fang, HUANG Jing-qing, ZHENG Jia-gai. The preparation and sintering course of nanosize WC-Co composites[J]. Cemented Carbide, 2000, 17(1): 18-20.
- [2] SUN J F, ZHANG F, SHEN J. Characterizations of ball-milled nanocrystalline WC-Co composite powders and subsequently rapid hot pressing sintered cermets[J]. Materials Letter, 2003, 57: 3140–3148.
- [3] FANG Z, MAHESHWARI P, WANG X, SOHO H Y, GRIFFO A, RILEY R. An experimental study of the sintering of nano-crystalline WC-Co powders[J]. International Journal of Refractory Metals & Hard Materials, 2005, 23(4/6): 249–257.
- [4] 吴彩霞,朱世根,马 俊,张梅琳. 高能球磨制备纳米
 WC-MgO 粉末反应模式及判据[J]. 中国有色金属学报, 2009, 19(3): 411-417.

WU Cai-xia, ZHU Shi-gen, MA Jun, ZHANG Mei-lin. Reaction mode and its criterion in synthesis of nanocomposite WC-MgO powders by high-energy ball milling[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(3): 411–417.

- [5] EL-ESKANDARANY M S. Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials at room temperature[J]. Journal of Alloys and Compounds, 2000, 296: 175–182.
- [6] EL-ESKANDARANY M S. Synthesizing of nanocomposite WC-MgO powders by mechanical solid-state reduction and subsequent plasma-activated sintering[J]. Metallurgical and Materials Transactions A, 2001, 32: 157–164.
- [7] SHETTY D K, WRIGHT I G, MINCER P N, CLAUER A H. Indentation fracture of WC-Co cermets[J]. Journal of Materials Science, 1985, 20: 1873–1882.
- [8] KEAR B H, SKANDAN G, SADANGI R K. Factors controlling decarburization in HVOF sprayed nano-WC-Co hard coatings[J]. Scripta Materialia, 2001, 44: 1703–1707.
- [9] 赵高敏, 王昆林, 刘家浚. La₂O₃ 对激光熔覆铁基合金层硬度 及其分布的影响[J]. 金属学报, 2004, 40(10): 1115-1120.
 ZHAO Gao-min, WANG Kun-lin, LIU Jia-jun. Effect of La₂O₃ on hardness distributions of laser clad ferrite-based alloy

coatings[J]. Acta Metallurgica Sinica, 2004, 40(10): 1115-1120.

- [10] 吉泽升.稀土对硼铝共渗渗层相组成的影响[J].中国稀土学报, 2000, 18(1): 27-30.
 JI Ze-sheng. Effect of Re-B-Al on composition of permeation layer[J]. Journal of Chinese Rare Earths Society, 2000, 18(1): 27-30.
- [11] 冀晓鹃,宫声凯,徐惠彬,刘福顺.添加稀土元素对热障涂层 YSZ 陶瓷层晶格畸变的影响[J]. 航空学报,2007,28(1): 196-200.

JI Xiao-juan, GONG Sheng-kai, XU Hui-bin, LIU Fu-shun. Influence of rare earth elements additions in YSZ ceramic coatings of thermal barrier coatings on lattice distortion[J]. Acta Aeronautica Et Astronautica Sinica, 2007, 28(1): 196–200.

- [12] GU D D, SHEN Y F, ZHAO L, XIAO J, WU P. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering[J]. Materials Science and Engineering A, 2007, 445/446: 316–322.
- [13] JANG B K, ENOK M, KISHI T, OH H K. Effect of second phase on mechanical properties and toughening of Al₂O₃ based ceramic composites[J]. Composite Engineering, 1995, 5: 1275–1286.
- [14] MURRAY J L. Phase diagrams of binary alloys[M]. Metals Park, 1987: 345.
- [15] YANG Q H, ZENG Z J, XU J, DING J. Effect of La₂O₃ on microstructure and transmittance of transparent alumina ceramics[J]. Journal of Rare Earths, 2006, 24: 72–75.

[16] 种法力,陈 勇,吴玉程,陈俊凌. La₂O₃ 弥散增强钨合金面 对等离子体材料及其高热负荷性能[J]. 材料科学与工程学报, 2009, 27(3): 415-417.
CHONG Fa-li, CHEN Yong, WU Yu-cheng, CHEN Jun-ling. Tungsten alloys strengthened with dispersed La₂O₃ and its heat flux performance[J]. Journal of Materials Science & Engineering, 2009, 27(3): 415-417.

- [17] JANG J S C, FWUA J C, CHANGA L J, CHENA G J, HSUB C T. Study on the solid-phase sintering of the nano-structured heavy tungsten alloy powder[J]. Journal of Alloys and Compounds, 2007, 434/435: 367–370.
- [18] ZHANG X H, LIU C X, LI M S, ZHANG J H. Research on toughening mechanisms of alumina matrix ceramic composite materials improved by rare earth additive[J]. Journal of Rare Earths, 2008, 26: 367–370.

(编辑 李艳红)