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High temperature low cycle fatigue behavior and
its micro-mechanism of titanium alloy at 600
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Abstract: High temperature low cycle fatigue behavior and its micro-mechanism of near & TG6 titanium alloy disc
forging with duplex microstructure in different strain amplitude at 600  were studied. The total strain amplitudes (Ae,/2)
and strain ratio R were controlled at £0.6%—%1.5% and —1, and tested with triangular waveform loading. The results
show that the maximum tensile stress (o) increases and the low cycle fatigue life (V;) decreases with increasing Ag,/2
under low cycle fatigue at 600 . The critical total strain amplitude ((A¢/2).) of cyclic hardening and softening is about
+1.0% for TG6 titanium alloy disc forging with a+f microstructure, the cyclic hardening behavior dominates while the
strain amplitude is above (A¢/2)., and the cyclic softening behavior dominates while the strain amplitude is below the
(Ag/2).. The fatigue crack initiates at several origins under cyclic deformation at all strain amplitude. The LCF fatigue
behavior is controlled by planar slip of dislocation and which may result in fatigue crack in the a grain. The difference of
critical resolved shear stress (CRSS) at each slip plane is gradually reduced, and which may promote the cross slip of
dislocations.
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Table 1 LCF properties of Ti alloy at 600

Strain,  Frequency/ ‘ Cycle
Ae/2/% Hz Onax/MPa G/ MP2 number
0.6 0.167 452 —465 2113
+0.8 0.125 503 -522 817
+1.0 0.100 559 -596 449
+1.5 0.067 647 —691 105
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Fig.1 Microstructures of TG6 titanium alloy a+f processed

disc forging in solution treatment and aging state
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Fig.2 Cyclic stress response at 600 and different strain

amplitudes
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Fig.3 Fractographs of LCF specimen tested at Ag/2=10.6% and 600 : (a) Macro-fractograph; (b) Fatigue crack origin zone;
(c), (d) Fatigue crack propagation zone
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4 Ae,/2=10.8% 600
Fig.4 Fractographs of LCF specimen tested at A¢/2=%0.8% and 600 : (a) Macro-fractograph; (b) Fatigue crack origin zone;
(c), (d) Fatigue crack propagation zone
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Fig.5 Fractographs of LCF specimen tested at A¢/2=%1.0% and 600 : (a) Macro-fractograph; (b) Fatigue crack origin zone;
(c), (d) Fatigue crack propagation zone
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6 Ae,/2=+1.5% 600
Fig.6 Fractographs of LCF specimen tested at Ae/2=%1.5% and 600 : (a) Macro-fractograph; (b) Fatigue crack origin zone;
(c), (d) Fatigue crack propagation zone
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Fig.7 Dislocation structures in LCF specimen tested at 600
and Aeg/2=%1.5%: (a) High density tangled dislocations;
(b) Dislocation array showing pairing style; (c) Widely slip
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