文章编号:1004-0609(2010)S1-s0219-05

3 mm 厚钛/钢复合板低爆速炸药稳定爆轰的研究

关尚哲,刘润生,范江峰,张杭永,车龙泉,付光辉

(宝钛集团有限公司, 宝鸡 721014)

摘 要:研究3mm厚的钛/钢复合板在爆炸焊接工艺技术条件下,采用不同药量的低爆速炸药,通过从起爆端开 始沿爆轰长度方向对结合界面进行波纹检测及氧化和熔化研究,研究低爆速炸药不同用药量时在钛/钢复合板的稳 定爆轰长度,为长度 4m钛/钢复合板爆炸焊接工艺参数的制定建立基础。 关键词:钛/钢复合板;低爆速炸药;爆轰载荷;稳定长度 中图分类号:TG146.2⁺³ 文献标志码:A

Study on detonation velocity stability of 3 mm-thickness titanium/steel clad plate with low detonation loading explosive

GUAN Shang-zhe, LIU Run-sheng, FAN Jiang-feng, ZHANG Hang-yong, CHE Long-quan, FU Guang-hui

(Baoti Group Co., Ltd., Baoji 721014, China)

Abstract: By utilizing low detonation velocity explosive technology, the explosive welding of the 3 mm-thickness layer of titanium/steel clad plate was studied. The oxidation and melting of the interface from the detonation spreading direction was studied. Accordingly, a base for the parameters for the explosive welding of titanium/steel clad plate with length over 4 m was set up.

Key words: titanium/steel clad plate; low detonation velocity explosives; detonation load; stability length

对于爆炸焊接界面,国内外研究者从不同角度对 界面结合熔化、脆层、波纹变化等方面进行了研究, 但只限于小板试验理论研究^[1],没有对长度不小于4m 爆轰载荷产生不稳定问题界面的变化进行研究。以钛/ 钢复合板为例,实际显示3mm厚复层复合板爆炸焊 接时,当板长度不小于4m时,不同的用药量界面出 现缺陷距中心起爆点距离不相同,所以研究低爆速炸 药稳定爆轰作用时钛/钢复合板长度出现熔化或氧化 部位,对探讨爆炸焊接机理有重要意义。

本文作者从钛/钢爆炸复合工艺出发,研究用一种 低爆速炸药爆炸焊接时稳定爆轰长度及炸药用量与焊 接质量的关系。

1 实验

1.1 低爆速炸药的选择

爆炸焊接对所用炸药爆速是依据被焊接材料的声 速来选择,通过实际运用和理论结合,低爆速炸药选 择依据如下^[2-4]:

 $(0.6 \sim 0.8)v_{\rm h} \quad v_{\rm d} < 1.2v_{\rm s}$ (1)

式中:v_s为材料声速;v_h为材料横波声速;v_d为炸药 爆速。

钛的声速 v_s 为 4 786 m/s,横波声速 v_h 为 2 960 m/s^[5-8],计算低爆速炸药的范围为 1 776~5 743 m/s,依据猛度值的实测结果,实验中选择低爆速炸药的平均爆速是 2 100~2 200 m/s。

- 1.2 试验用料
- 1.2.1 试验材料和规格

试验牌号为 TA1/Q235B; TA1 的尺寸为 3 mm× 2 040 mm×6 050mm; Q235B 的尺寸为 30 mm×2 000 mm×6 000 mm。

通信作者:关尚哲;电话: 0917-3386994; E-mail: zhy1893@163.com

1.2.2 原材料的化学成分和性能

符合钛材和钢材相应标准,并要求两种材料各为 同一批号。

- 1.3 试验方法
- 1.3.1 爆炸焊接工艺参数列于表 1。
- 1.3.2 检测项目

实验中分别对表面缺陷、界面形貌、波纹尺寸和 力学性能进行了检测。

表1 钛/钢复合板爆炸焊接工艺过程及参数

 Table 1
 Explosive welding process and parameters of Ti/steel clad plate

2 试验结果

- 3.1 钛/钢复合板的表面缺陷照片
 钛/钢复合板的表面缺陷照片如图 1 所示。
- 3.2 缺陷侧结合界面波纹形貌照片 缺陷侧结合界面波纹照片如图 2 所示。

Table 1 Explosive weighing process and parameters of Tristeel ead plate							
工序类别	过程参数	工序类别	过程参数				
基板规格	Q235B: 30 mm×2 000 mm×6 000 mm	炸药	同一种爆速,不同的药量				
复板规格	TA2: 3 mm×2 040 mm×6 050 mm	药量/(kg·m ⁻²)	20, 25, 30, 35, 40				
表面处理	去净氧化皮,板面平整光洁	地基基础	砂土地基				
间隙高度	取同等高度的间隙	起爆方法	中心起爆,8 [#] 电雷管				

注: 取材和爆炸复合工艺, 严格保持一致。取样观察研究形貌及波纹变化。

图 1 钛/钢复合板的表面缺陷照片

Fig.1 Surface defects photos of titanium steel clad plate: (a) 20, 25 kg/m² dosage from initiation point of defect location of 1.74 m; (b) 30 kg/m² dosage from initiation point of defect location of 1.95 m; (c) 35 kg/m² dosage, defects of 1.5 m away from donation point position; (d) 40 kg/m² dosage defects of 1.35 m away from detonation point position

图 2 缺陷侧界面波纹照片

Fig.2 Defects photos of side interface wave: (a) 20, 25 kg/m² dosage from initiation point of 1.95 m interface; (b) 30 kg/m² dosage from initiation point of 1.74 m interface; (c) 35 kg/m² dosage of 1.5 m from initiation point of interface; (d) 40 kg/m² dosage of 1.35 m from initiation point of interface

2.3 金相照片 结合界面的金相照片如图 3 所示。

图 3 结合界面的金相照片

Fig.3 Metallographs of interface: (a) 20, 25 kg/m² dosage at point 1.95 m from interface; (b) 30 kg/m² dosage at point 1.74 m from interface; (c) 35 kg/m² dosage at point 1.5 m from interface; (d) 40 kg/m² dosage at point 1.35 m from interface

表 2 金相照片波纹尺寸和产生化合物的量分析结果

2.4 结合界面波纹尺寸及脆性化合物的量分析 检测金相照片波纹尺寸和产生化合物量的分析结

果见表2。

2.5 力学性能检测
 钛/钢复合板的力学性能见表 3。

3 讨论与分析

3.1 爆炸焊接原理

炸药爆轰气体压力的叠加分析如图 4 所示。当炸 药起爆后,爆轰时从起爆端开始爆轰压力加速增加的 *Op* 段,*Op* 段是炸药爆炸初始形成的爆炸压力和爆轰 产生的高速汽流载荷叠加压力较弱的部分,未对结合 过程产生破坏作用或很微弱^[9–12]。在本次钛/钢复合爆 炸焊接试验时,从起爆点向外测量长度半径小于或等 于 2 m,钛/钢复合板边界界面和探伤波形良好,结合 面无硬化细末杂质,波纹有规律地从小到大变化,波 宽检测从 0.06 mm 增大 1.1 mm 左右,观察结合界面 反映出良好银白色,界面没有发黑边、氧化、熔化问 题。从图 4 中看到当爆轰压力增加到 *p*1 时,在长度方 向 *L*1 段爆炸焊接质量良好,称(1)区为稳定爆轰载荷长 度区。

*p*1*p*2 段是爆炸压力和高速汽流载荷叠加压力加速 增加,当钛/钢复合爆炸焊接试验时,从起爆点向外测 量长度,当半径大于或等于 2 m 时,钛/钢复合板检查 表面出现冲孔、复层鼓棱、撕裂、氧化、熔化,从分 离基、复板结合面存在硬化细沫杂质,波纹出现不规 则变化,波宽检测从 0.8 mm 逐渐增大 1.3 mm 左右, 此现象反映在半径 2 米以外距头部还有约 700 mm 范

T-11. A	D. ((· C · · · · 1 · · · · · · · 1			
Table 2	Detection results of	of ripple size and	produces metallurgical	photos quantitative anal	vsis of compounds

编号 —	测量波形数据			化合物分析		
	波数/mm ⁻¹	波宽/mm	波高/mm	Ti 侧	钢侧	
а	1.25	0.18-0.29	0.20-0.35	微量: FeTi; TiC, Fe 2Ti	微量: FeTi, TiC	
b	1.03	0.33-0.60	0.50-0.80	微量: FeTi; TiC, Fe ₂ Ti	微量: FeTi, TiC	
с	0.98	0.63-0.95	0.80-1.10	少量 : FeTi; 微量 : Fe ₂ Ti	少量: FeTi; 微量: Fe ₂ Ti	
d	0.79	1.10-1.80	1.25-1.50	主要: FeTi; 微量: Fe2Ti	主要 : FeTi; 微量 : Fe₂Ti	

注:取样部位分别在材料的缺陷部位 1.95 m、1.74 m、1.5 m、135 m 处,金相照片、脆性化合物、波纹尺寸检测得到数据结果及结合界面 X 线分析的结果。

表3 钛/	钢复合板力学性能
-------	----------

 Table 3
 Titanium/steel mechanical properties of composite plate

序号	牌号	尺寸/m	$\sigma_{\rm b}/{ m MPa}$	σ₅/MPa	δ /%	$\tau_{\rm b}/{ m MPa}$	内弯	药量/(kg·m ⁻²)
А	TA1/Q235B	3/30 × 2 × 6	345	255	33	185	合	20, 25
В	$TA_1/Q235B$	3/30 × 2 × 6	340	270	31	238	合	30
С	$TA_1/Q235B$	3/30 × 2 × 6	365	295	29	215	合	35
D	TA1/Q235B	3/30 × 2 × 6	405	320	27.5	175	合	40

注:以上试验性能数据是在缺陷部位附近取样检测的结果,剪切强度是此次试验重点考虑的测试数据,依据不同的药量、缺 陷位置和缺陷附近的剪切强度的影响,判定稳定爆轰长度。

Fig.4 Relationship between detonation pressure and welding length

围,即*p*1至*p*2段称为不稳定长度或不稳定区域如区域(2)。

*p*₂*p*₃段是炸药爆轰到尽头时,爆轰压力载荷瞬间 降低,在钛/钢复合爆炸焊接试验时,从板头部向起爆 点方向测量约 700 mm 时,钛/钢复合板结合良好,这 说明在半径 2 m 以外距头部还有约 700 mm 的范围, 分析在此段爆轰压力载荷瞬间降低,但从中心起爆点 延续下来的界面碰撞射流温度较高,界面碰撞变形还 是增大的,由于到了端部高温射流排放顺利瞬间几乎 没有停滞,故界面未产生氧化仅是界面发黑现象。

在理想状态下炸药起爆后,爆轰压力加速增加, 到某长度或时间应是处于平稳状态即近似于平稳线 p_1 至 p_4 段^[13-15],而实际炸药爆轰叠加在 p_1 至 p_2 段爆轰 压力是增加的,它与平稳线有一个叠加压力差值为 Δp ,板幅越长压力差值越大也就是爆轰压力不稳定长 度 $p_1 \sim p_2$,如何控制达到p曲线是一个探讨研究课题, 这就要首先确定稳定爆轰长度。

3.2 钛/钢复合板爆炸焊接试验

在使用低爆速炸药(平均爆速:2150 m/s)爆速确 定时,试验用药量分别为20、25、30、35和40 kg/m², 中心起爆,缺陷距起爆点距离分布在1.95、1.74、1.50 和1.35 m,随着药量增加缺陷部位越靠近起爆点,说 明稳定爆轰区的长度在缩短,但距爆炸板的两端部向 中心起爆点的方向,复合板距两端部约700mm 左右是 良好的,这说明爆轰压力载荷在末端瞬间的减小进一 步降低,说明不稳定区域长度随着药量的增加而增加。

缺陷侧结合界面波纹形貌照片及金相照片和表 2 中检测波纹尺寸可知:波纹尺寸由小至大的顺序为 a < b < c < d,再次印证爆轰载荷压力是逐渐增大的, 这与爆轰压力载荷图也是一致的。

表 2 中产生化合物量的分析中,随着药量增加, 脆性化合物成分也增大,在对中心起爆点 1.5 m 以外 的区域分离观察时,其中 20、25、30 kg/m²的药量结 合面有很轻微的脆化细末杂质,分析是钛侧微量的 FeTi、TiC 和 Fe₂Ti,而 35 和 40 kg/m²的药量结合界 面脆化颗粒粗大,分析是钛侧少量的 FeTi、TiC 和 Fe₂Ti。

3.3 钛/钢复合板爆炸焊接试验

从表 3 中钛/钢复合板实测的力学性能看:力学性 能中剪切性能是此次试验重点考虑的测试数据,20 和 25 kg/m²药量时复合材料的平均剪切性能是185 MPa, 30 kg/m²药量时平均剪切性能是235 MPa,35 kg/m² 药量时平均剪切性能是215 MPa,40 kg/m²药量时平 均剪切性能是175 MPa。从剪切性能判定分析,药量 低的结合界面虽然界面脆化物很少但结合强度相对 低,药量高的界面脆化物含量多造成结合强度低,同 时对深加工不利易产生卷制、钻孔分层,从而判定药 量在30、35 kg/m²药量调整确定爆炸工艺,故依据30、 35 kg/m²的药量、缺陷位置和缺陷附近的剪切强度的 影响,确定稳定爆轰载荷长度在1.50~1.74 m之间。

4 结论

1) 双金属材料爆炸焊接中存在稳定爆轰载荷区

和不稳定爆轰载荷区。

2) 在尺寸为 3/30 mm × 2 000 mm × 6 000 mm 钛/ 钢复合板爆炸试验中,采用低爆速炸药在平均爆速为 2 150 m/s 时药量为 30 和 35 kg/m² 的稳定爆轰载荷长 度范围是从起爆点开始到缺陷部位 1.5~1.7 m 处。

3) 起爆点开始到缺陷部位 1.5 m 至 1.7 m 以外区 域存在爆轰不稳定区域,如何控制爆轰不稳定区域, 将是提高爆炸焊接质量的关键。

REFERENCES

 王耀华. 金属板爆炸焊接研究与实践[M]. 北京: 国防工业出 版社, 2007.

WANG Yao-hua. Research and practice of explosive welding of metal plates[M]. Beijing: National Defense Industry Press, 2007.

[2] 浩 谦. 金属爆炸加工理论和应用[M]. 北京: 中国建筑工业 出版社, 1983.

HAO Qian. Theory and application for explosion processing of metal materials[M]. Beijing: China Construction Industry Press, 1983.

- [3] 稀有金属材料加工手册[R]. 1983.Processing Manual for Rare Metal Materials[R]. 1983.
- [4] 郑远谋.爆炸焊接和金属复合材料及其工程应用[M].长沙: 中南大学出版社,2002.

ZHENG Yuan-mou. Explosive welding and metal clad material process projection[M]. Changsha: Central South University Press, 2002.

[5] 杨 扬. 金属爆炸复合技术与物理冶金[M]. 北京: 化学工业 出版社, 2006.

YANG Yang. Explosive clad technology and physical metallurgy[M]. Beijing: Chemical Industry Press, 2006.

- [6] 史长根, 王耀华. 爆炸焊接边界效应的产生、发展和消除[J].
 焊接技术, 1998(2): 2-4.
 SHI Chang-gen, WANG Yao-hua. Appearance, development and disappearance of explosive welding boundary affection[J].
- [7] 史长根,王耀华,王伟策,李华兵,陆 明,顾月兵.爆炸焊
 接下限的确定[J].爆破器材,2001(3):22-26.
 SHI Chang-gen, WANG Yao-hua, WANG Wei-ce, LI Hua-bing,

Welding Technology, 1998(2): 2-4.

LU Ming, GU Yue-bing. Determination on lower-limit of explosive welding[J]. Demolition Equipment, 2001(3): 22–26.

- [8] 马东康,周金波. 钛/钢爆炸焊接界面区形变特征研究[J]. 稀 有金属材料与工程,1999,28(1):26-29.
 MA Dong-kang, ZHOU Jin-bo. Study on deformation, characteristics of explosive welding area of Ti/steel plates[J].
 Rare Metal Material and Engineering, 1999, 28(1): 26-29.
- [9] 张保奇. 异种金属爆炸焊接结合界面的研究[D]. 大连: 大连 理工大学, 2005.
 ZHANG Bao-qi. Study on bond interface for different metals[D].
 Dalian: Dalian University of Science and Technology, 2005.
- [10] 杨文彬, 奚进一, 孙 明. 爆炸复合板的界面波及其影响[J]. 爆破器材, 1998, 27(4): 24-28.
 YANG Wen-bin, XI Jin-yi, SUN Ming. Interface wave and its influence of explosive metal clad plate[J]. Demolition Equipment, 1998, 27(4): 24-28.
- [11] 郑远谋. 爆炸焊与异种金属材料的焊接[J]. 工艺与新技术, 2001, 130(5): 31-35.
 ZHENG Yuan-mou. Explosive welding and the welding of different metal materials[J]. Technology and New Technique, 2001(5), 130(5): 31-35.
- [12] 彭大署, 刘浪飞, 朱旭霞. 金属层状复合材料的研究现状与 展望[J]. 材料导报, 2000, 14(4): 5-11.
 PENG Da-shu, LIU Lang-fei, ZHU Xu-xia. Present situation prospects of laminated metal clad materials[J]. Material Newspaper, 2000, 14(4): 5-11.
- [13] 邵丙磺,张 凯. 爆炸焊接原理及其工程应用[M]. 大连: 大 连工学院出版社, 1987.
 SHAO Bing-huang, ZHANG Kai. Theory and its application of explosive welding[M]. Dalian: Dalian Science College Press, 1987.
- [14] 郑哲敏,杨振声.爆炸加工[M].北京:国防工业出版社,1981.

ZHENG Zhe-min, YANG Zhen-sheng. Explosive processing[M]. Beijing: National Defense Industry Press, 1981.

[15] 吕春绪, 刘祖亮, 倪欧琪. 工业炸药[M]. 北京: 兵器工业出版社, 1994.

LÜ Chun-xu, LIU Zu-liang, NI Ou-qi. Industrial dynamite[M]. Beijing: Weapons Industry Press, 1994.

(编辑 龙怀中)