文章编号:1004-0609(2010)S1-s0167-06

TC17 钛合金在热变形过程中的组织演变规律

徐 斌¹, 王晓英¹, 周建华¹, 王凯旋², 曾卫东²

(1. 宝山钢铁股份有限公司 特钢事业部,上海 200940;2. 西北工业大学 材料科学与工程学院,西安 710072)

摘 要:为了揭示变形程度和变形温度对 β 预制坯针状组织的影响规律,在 800、820、840 和 860 这4个不同 温度以及 20%、40%、60%和 80%这4 个不同应变量进行小饼等温压缩试验。研究结果表明:变形程度是影响 TC17 钛合金球化的主要因素。在变形量为 40%~60%时,片状 α 组织受到剪切作用并发生动态再结晶;当变形量大于 60%时,组织发生有效球化。在 800~860 温度范围内,变形温度越高,越有利于组织球化。 关键词: β 预制坯;针状组织;球化;动态再结晶 中图分类号:TG146.2 文献标志码:A

Microstructure evolvement regularity of TC17 titanium alloy in hot deformation

XU Bin¹, WANG Xiao-yin¹, ZHOU Jian-hua¹, WANG Kai-xuan², ZENG Wei-dong²

(1. Special Steel Branch, Baoshan Steel Co., Ltd., Shanghai 200940, China;

2. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China)

Abstract: In order to disclosure the influence of deformation temperature and deformation degree on β preforming acicular structure, small pie isothermal compressing test with different strain levels from 20% to 80% was carried out at four different temperatures ranging from 800 to 860 . The results show that deformation degree is the key factor which influences the spheroidization of TC17 alloy. When the deformation rate is 40%–60%, lamellar structure of α phase is broken by the shear force and dynamic recrystallization takes place. When the deformation rate is higher than 60%, the spheroidization is effective. In the tempeature range of 800–860 , the higher the temperature, the better the spheroidization.

Key words: β preform; acicular structure; spheroidization; dynamic recrystallization

TC17 钛合金是一种近 β 型钛合金 ,其名义成分为 Ti-5Al-2Sn-2Zr-4Mo-4Cr(质量分数,%)。其中,Al、 Sn 和 Zr 元素强化 α 相,从而改善蠕变抗力,并且缓 和 β 相的时效特征;Mo 和 Cr 元素确保大截面材料的 热处理和淬透性。因此,TC17 钛合金在强度、淬透性、 疲劳和断裂韧性方面可以达到平衡,并具有良好的综 合性能,在各种航空发动机的风扇和压气机盘件上得 到了广泛的应用^[1]。

本文作者采用热模拟压缩试验研究温度、应变速 率和应变量对具有片状组织的 TC17 钛合金流动应力 的影响规律,建立合金的本构关系模型和片状组织球

- 1 实验
- 1.1 实验材料

实验材料为炉号 845-0032, d 75 mm ×180 mm 的

化的动力学模型。由于热模拟压缩试验不能真实地反 映等温锻造过程中显微组织的演变情况,本研究设计 在800~860 内4个不同温度和20%~80%4个不同应 变量的小饼等温压缩试验,以进一步揭示变形程度和 变形温度对β预制坯针状组织的影响规律。

通信作者:徐 斌; 电话: 021-26032683; E-mail: xubin242@baosteel.com

棒材,相变点为900,如图1所示,其成分和力学性能见表1和2。

图 1 TC17 钛合金棒材照片

Fig.1 Photo of TC17 titanium alloy bar

表1 TC17 钛合金的化学成分

Table 1 Composition of TC17 titanium alloy (mass fraction, %)

Ti	Al	Cr	Sn	Zr	Мо
Bal.	5.33	4.08	2.23	2.29	4.03
0	Fa	N	П	C	V
0	ге	IN	п	C	I

表 2 TC17 钛合金的棒材力学性能

 Table 2
 Mechanical properties of TC17 titanium alloy bar

Temperature/	$\sigma_{\rm b}/{ m MPa}$	$\sigma_{0.2}$ /MPa	δ_5 /%
Room temperature	1 1 5 0	1 1 3 0	11
400	960	825	12
400 (100 h)	1 200	1 160	12
Temperature	ψ/%	$A_{\rm K}/{ m J}$	Hardness, d/mm
Room temperature	45	20	3.28
400	42	-	_
400 (100 h)	39	_	_

1.2 实验方案

坯料在相变点以上温度制备 β 预制坯,然后在 800~860 选取4个不同温度并在20%~80%选取4个 不同应变量进行等温压缩试验。将两相区等温锻造圆 饼沿中心对半切开取样,如图2所示。

1.3 高倍金相的取样及观察

在两相区等温锻造圆饼的边缘、1/2 半径处和中心 部位分别取样进行金相观察,观察面为线切割对称垂 直剖面。金相取样示意图见图 3。

在 JEOL JSM-6390A 扫描电镜上观察试样变形后

图 2 TC17 钛合金在 860 下等温压缩试验取样照片 Fig.2 Photos of TC17 titanium alloys sampling for isothermal compression at 860

图 3 金相取样示意图

的组织,如图 4~7 所示。

1.4 有限元模拟

由于模拟小饼在等温镦粗过程中存在摩擦阻力的 影响,导致各部位变形不均匀。为了更真实地反映各 部位的变形情况,采用有限元模拟软件 Deform-3D 模 拟小饼等温镦粗的变形过程,计算不同变形程度圆饼 的边缘、1/2 半径处和中心部位的等效应变。有限元模 拟的变形过程如图 8 所示。

不同变形条件下的等效应变值列于表 3。可以看 出:各种变形程度下圆饼的边缘、1/2 半径处和中心部 位的等效应变依次增大,1/2 半径处的等效应变与名义 应变接近。因此,以 1/2 半径处的样品为例进行分析 和讨论。

2 结果与讨论

图 4~7 所示为 TC17 钛合金在 800~860 、变形

图 4 TC17 钛合金在 800 不同应变量等温压缩变形后的 SEM 像

Fig.4 SEM images of isothermal compressed TC17 alloys with different deformation degrees at 800 : (a) 20%; (b) 40%; (c) 60%;

(d) 80%

图 5 TC17 钛合金在 820 不同应变量等温压缩变形后的 SEM 像

Fig.5 SEM images of isothermal compressed TC17 alloys with different deformation degrees at 820 : (a) 20%; (b) 40%; (c) 60%; (d) 80%

量为 20%~80%等温压缩变形后的显微组织。从图 4 中可以看出:在 800 变形时,由于锻造温度较低, 片状 α 相含量较多,尺寸细小。20%变形时,片状 α 相呈一定角度交错分布,变化不大。40%变形时,部 分片状 α 相被截断,并能观察到部分扭曲的 α 条, 这是由于变形温度低、动态再结晶不充分所导致的结 果;部分条状 α 相发生旋转,呈现一定的方向性。60% 变形时,组织明显发生切断和球化,条状 α 相倾向于 沿垂直于压缩轴方向分布。80%变形时组织几乎完全 球化,能观察到许多晶粒由于承受变形而发生扭曲的 现象。820 的组织变形特征与 800 的呈现类似的 规律(图 5)。20%变形时显微组织大部分呈条状,40% 变形时组织发生部分切断,60%变形时大部分组织球 化,并呈一定方向性分布,80%变形时几乎完全球化。 840 变形时,由于温度升高,条状α相含量减少, 长宽比降低,发生明显粗化(图 6)。20%变形已可见 短条状α相,40%变形发生条状α相断裂,60%变形 时大部分条状α相已发生剪切,但并未完全断开, 80%变形时已完全球化。860 变形时,条状α相含 量更少(图 7)。20%变形已有不少短条状α相,60%

图 6 TC17 钛合金在 840 不同应变量等温压缩变形后的 SEM 像 Fig.6 SEM images of isothermal compressed TC17 alloys with different deformation degrees at 840 : (a) 20%; (b) 40%; (c) 60%; (d) 80%

图 7 TC17 钛合金在 860 不同应变量等温压缩变形后的 SEM 像 Fig.7 SEM images of isothermal compressed TC17 alloys with different deformation degrees at 860 : (a) 20%; (b) 40%; (c) 60%; (d) 80%

图 8 TC17 合金小圆饼等温镦粗变形过程的有限元模拟

Fig.8 Finite element modeling of small pipe isothermal compression of TC17 alloy: (a) 20%; (b) 40%; (c) 60%; (d) 80%

表 3 TC17 合金不同变形程度下的应变量

 Table 3
 Strain with different deformation degrees of TC17

 alloy
 TC17

Peformation	Nominal strain	Strain			
degree/%		Rim	<i>R</i> /2	Center	
20	0.223	0.143 561	0.300 322	0.390 046	
40	0.511	0.328 389	0.647 734	0.674 281	
60	0.916	0.590 613	1.079 930	1.168 484	
80	1.609	1.159 306	1.784 168	1.939 535	

变形时条状 α 相已基本断开 ,80%变形时已完全球化。 可见 ,变形量对 TC17 钛合金片状组织的球化作用最 明显 ,变形量越大 ,温度越高 ,越有利于组织球化。 这可以用球化模型来解释。按照 MARGOLIN 等^[2]和 SEMIATIN 等^[3]提出的晶界分离模型 ,片状组织的球 化可分为 α 片切断和短片 α 球化两个过程 ,如图 9 所 示。 α 片的切断主要有两种机制:一种是剪切变形切 断 ,另一种是形成亚晶。局部剪切变形使 α 片内形成 强烈的剪切带 ,若直接形成 α/β 界面可能完全切断 α 片 ,若形成大角度 α/α 晶界则发生相对错移或扭折。

图 9 片状组织切断模型

若剪切变形在剪切平面内产生两种符号相反的位错, 高温变形的回复机制使交割面上符号相反的位错发生 湮灭,留下相同符号的位错形成小角度晶界,进而形 成亚晶,将 α 片组织分割成许多小段。剪切或切断与 变形能密切相关,因而随着变形量的增大,球化作用 明显。

剪切变形(不完全贯穿)或亚晶的形成会在 α/α 界 面与 α/β 界面交接处形成沟槽,在变形和随后热处理 过程中,β相可能进一步楔入α晶界。当α片状组织 的宽度小于 β 相楔入深度的 2 倍, α 片被切断。 β 相楔 入的深度与亚晶界面能有关,是界面能 $\gamma_{\alpha\alpha}$ 和 $\gamma_{\alpha\beta}$ 相互 平衡的结果,可以表示为

 $\gamma_{\alpha|\alpha} = 2\gamma_{\alpha|\beta}\cos\theta \tag{1}$

由式(1)可以看出: 当 $\gamma_{\alpha\beta}$ 一定时(通常不变),界面 能 $\gamma_{\alpha\prime\alpha}$ 越大,两界面的夹角 θ 越小, β 相楔入的深度越 深,如图 10 所示。同理,钛合金片状组织 α/α 界面能 低, β 相穿透 α 片的驱动力小,因而仅仅加热,不足 以使合金组织发生球化。通过变形形成小角度或大角 度晶界,能显著提高合金的界面能,加速合金元素的 扩散,有利于片状组织的球化。切成小段的片状 α 若 存储了足够的变形能,在随后的热处理过程中将进一 步降低长宽比,形成等轴组织。其球化机理仍然是 β 相穿透 α 片或剪切带。

按照上述理论,在变形温度较低时(如 800), 合金元素的扩散作用相对较弱,片状 α 相通过 β 相穿

图 10 β相楔入深度与界面能的关系示意图

Fig.10 Schematic map of relationship between wedging depth of β phase and interfacial energy

透片状 α 的作用小,球化率低,变形量较大时甚至出现了扭折和弯曲的现象;随着温度的升高,合金元素 扩散作用加强,球化率提高。

3 结论

 1) 变形程度和变形温度等热变形参数对 TC17 合 金的片状组织的球化过程存在重要影响,其中变形程 度是影响片状组织球化的主要因素。

2) 塑性变形能明显改变 TC17 合金原始片状组织的形貌,达到球化的目的。随着变形程度的增大,片状组织结构破碎和球化的程度提高。变形量小于 20%时,变形后的组织形貌变化不大;当变形量为 40%~60%时,片状 α 组织受到剪切而断裂,开始发生动态再结晶而向球状 α 组织转变。在较高的温度下,变形量大于 60%可得到完全球化的组织。

3) 在 800~860 温度范围内,变形温度越高,越 有利于组织球化。温度过低容易出现片状α弯曲和扭 折的现象。

REFERENCES

- BOYER R, BOYER R, WELSCH G, COLLINGS E W. Materials properties handbook: Titanium alloys [M]. Ohio: ASM, 1994: 453–463.
- [2] MARGOLIN H, COHEN P, KIMURA H, IZUMI O. Titanium: Science and Technology [C]// TMS. Warrendale, PA, 1980: 1555–1561.
- [3] SEMIATIN S L, SEETHARAMAN V, WEISS I. Flow behavior and globalarization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure[J]. Mater Sci Eng A, 1999, 263: 257–271.

(编辑 方京华)