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Elevated temperature deformation mechanism of
Ti2448 alloy at different strain rates
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(Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China)

Abstract: The deformation mechanism of metastable f-Ti2448 alloy at elevated temperature was investigated by

compression tests using Gleeble 3800 isothermal thermal simulator. The result shows that the deformation mechanism of

Ti2448 at elevated temperature is associated with strain rate. In the lower strain rate range (107371071 s "), the alloy

exhibits stress peak in the initial stage and gradually softens subsequently until steady-flow. The primary mechanism of

Ti2448 alloy at lower strain rate is discontinuous dynamic recrystallization (DDRX), with the characteristic of nucleation

and new grain growth. In the higher strain rate range of 1~63 s”', the alloy presents obvious hardening firstly, then slight

softening and steady-state finally. The leading mechanism of Ti2448 alloy at higher strain rate is plastic deformation

dominated by dislocation slipping. The interaction between dislocations and grain or sub-grain boundaries induces the

transformation of low angle boundaries into high angle boundaries, which indicates continuous dynamic recrystallization

(CDRX).
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Fig.1 Optical metallograph of hot rolled Ti2448 billet (a) and

TEM image and selected area electron diffraction pattern (b)
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Fig.2 True stress—strain curves of Ti2448 alloy at strain rate

of 107-63 s 'and 750
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Fig.3 Ino—Iné curves of Ti2448 alloy
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