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Abstract: By CASTEP and DMol program based on the density functional theory, the heat of formation, the cohesive

energy, the thermodynamic properties and the electronic structure of the alloying system were investigated to study the

structural stability of Sn alloying MgZn, phase and Mg,Sn phase and explain the mechanism of the influence of Sn

alloying on improving the creep resistance properties of ZA62 magnesium alloy. The results show that the structure of

these phases can exist and be stable when the Zn atoms at the I positions of the MgZn, phase are substituted with Sn and

Al, whereas, it is also found that Sn is little solved in MgZn, phase. By comparing with the stable MgZn, phase, it is

found that the stability of MgZn, phase is reduced with Sn addition, and the structure of intermetallic compound Mg,Sn is

more stable than that of MgZn, phase. By calculating the thermodynamic properties of different phases, it is found that

the improved creep resistance properties of ZA62 magnesium alloy are caused by forming intermetallic compound

Mg,Sn with higher structural stability which is not changed with the elevated temperature in the range of 373—473 K. The

( ) (200805321032)
(60870005)
2009-09-27 2009-12-30
13017297124 E-mail: ZDWe_mail@yahoo.com.cn



20 5

Sn MgZn,

Mg,Sn 915

calculations of the density of states (DOS) and Mulliken electronic populations of the alloying system show that the form

of Mg,Sn with the highest structural stability in ZA62 magnesium alloy with Sn addition attributes to the ionic bond and

covalent bond in the bonding electron numbers compared with those of MgZn, phase, Mg,AlZn; and Mg,SnZn; solid

solutions.
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Fig.1 Modes of MgZn, (a), Mg,AlZn; (b), Mg,SnZn; (c), MgSn, (d) and Mg,Sn (e)
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1 MgZn, Mg,Sn  Mulliken
Table 1 Mulliken electronic populations of MgZn, and Mg,Sn
Phase Species Population Total Charge/electron
s p d f
Mg 0.52 6.46 0 0 6.98 1.02
MgZn, Zn( ) 0.71 1.80 9.95 0 12.46 —0.46
Zn( ) 0.76 1.82 9.95 0 12.53 —-0.53
Mg 0.71 6.70 0 0 7.41 0.59
Mg,Sn
Sn 1.50 3.68 0 0 5.18 -1.18
properties of ZA62 alloys [J]. Foundry Technology, 2006, 27(4):
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