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Effects of quenching technics on microstructure and
creep properties of FGH95 superalloy
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Abstract: The effects of the solution and quenching technics on the microstructure and creep properties of FGH95
nickel-based superalloy were investigated by measurement of creep properties and microstructure observation. The
results show that the microstructure of the solution treated alloy cooled by oil bath consists of the inhomogeneous
particles and )’ phase, the relatively thick y’ phase discontinuously distributes in the boundary region that is poor of fine y’
phase. No coarse y’ phase is detected in the molten salt cooled alloy in which the grain size increases slightly and the fine
y" phase dispersively distributes within the grains, and some of the particle-like (Ni, Ti)C phases precipitate
discontinuously along the boundaries. Under the conditions of the applied stress of 1 034 MPa and 650 , the molten salt
cooled alloy displays a longer creep lifetime, and the creep activation energy of the alloy is measured to be 542.07 kJ/mol.
During the creep, the deformed mechanism of the solution treated alloy cooled in oil bath is that the double orientation
slipping of the dislocations is activated, the configuration of the dislocation tangles and stacking fault may be formed in
the molten salt cooled alloy. Thereinto, the fact that the particles-like carbides are discontinuously precipitated along the
boundary may effectively restrain the dislocation slipping, which is the main reason why this alloy possesses relatively
good creep resistance and long creep lifetime.
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Fig.2 Creep curves of salt cooling treated alloy under

different conditions: (a) At applied stress of 1 034 MPa and Fig.3 Relationships between strain rates and temperatures for

various temperatures; (b) At different applied stresses and
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alloys treated by different technics: (a) Curves of strain rate vs

temperature; (b) Curves of strain rate vs stress
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Table 2 Activation energies and stress exponents of alloy
during steady-state creep under different conditions 40~60 pm
Technic Activation energy/ 20 pm
- Stress exponents, n
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Fig.4 Creep curves of alloy treated by different quenching
technics at applied stress of 1 034 MPa and 650
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Fig.5 Morphologies of alloy after being treated by HIP:
(a) Distribution features of particles; (b) Fine y’ phase within

particles, thick y’ phase in boundaries regions
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Fig.6 Morphologies of alloy treated by different technics: SAD
(a) Oil cooling treated; (b) Salt cooling treated Fig.7 Morphology (a) and SAD patterns (b) of carbide phases

of solution treated alloy cooled by molten salt

(Ni Ti)C ()
20~25 pm( 6(b) ) ( 9(a) )
9(b)
2.3 /
650 984 MPa
260 h y' (
8(a) 8(a) y' 9(b))
0.1~0.2 pum y'
9(c)
8(b) (
8(b) 9(c))
(110) (1/3)(112)
( 8(c) ) 670
1 034 MPa 72 h (3l +



20 5 FGH95 857

8 650 984 MPa 260 h
Fig.8 Microstructures of oil cooling treated alloy crept for 260 h to fracture at applied stress of 980 MPa and 650 : (a) Fine )’
phase precipitated dispersedly within grains; (b) Double orientations slipping of dislocation as marked by arrows; (c) Dislocations

slipping stopped on boundary

9 670 1 034 MPa 72h
Fig.9 Microstructures of salt cooling treated alloy crept for 72 h to fracture at applied stress of 1 034 MPa and 650  : (a) Carbide

precipitates along grain boundary; (b) Dislocation tangles pile up near boundaries regions; (c) Stacking fault and dislocations within

grain
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