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Microstructure evolution of interface of aluminum alloy/magnesium
alloy explosive composite plates after low temperature annealing

YAN Yin-biao', WANG Jin-hua®, SHEN Xiao-ping', ZHANG Li-kui', ZHOU Xi'

(1. Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2. Lightweight Materials Institute, Ningbo Branch, China Academy of Ordnance Science, Ningbo 315103, China)

Abstract: The magnesium alloy (AZ31B)/aluminum alloy (A17075) explosive composite plates were annealed at
temperature below 220 . The microstructure, elemental distribution and shear strength of the interface were studied
with Axiover 40 MAT optical microscope, Quanta200 scanning electron microscope, EDAX energy dispersive
spectrometer and INSTRON 3367 mechanical properties testing machine, respectively. The interface evolution due to
low-temperature annealing was discussed. The results show that the recovery, recrystallization and grain growth of
magnesium alloy at the binding region occur with increasing the heating temperature and prolonging the holding time,
and the explosive adiabatic shear bands gradually disappear. The magnesium and aluminum inter-diffusion layers are
formed instead of the original sharp composite interface, and the dominant components in the diffusion layer are
gradually changed from solid solution into intermetallic compounds. At the same time, the characteristics of the
interfacial shear fracture change from ductile to brittle fracture. The composite interfacial shear strength depends on the
structure of the diffusion layer. When the structure of the diffusion layer is dominated by solid solution, the interfacial
shear strength will be enhanced by proper heat treatment because of the solid solution strengthening. However, the
interfacial shear strength is decreased by heating when the diffusion layer structure is dominated by intermetallic compounds.
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Fig.2 Microstructure evolution of AZ31/7075 explosive composite plate interface after low temperature annealing: (a) 120 , 4 h;
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Fig.3 Line scanning image (a) and relationship between

thickness of distance from interface and mass fraction of

elements (b) for composite interface
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