文章编号: 1004-0609(2010)03-0529-05

Bi 掺杂对 Ba_{6-3x}La_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(x=2/3)陶瓷的 烧结性能和介电性能的影响

高旭芳,丘 泰

(南京工业大学 材料科学与工程学院, 南京 210009)

摘 要:采用传统固相反应法制备 Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(*x*=2/3)微波介质陶瓷,研究 Bi 掺杂对 Ba_{6-3x}La_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(*x*=2/3)陶瓷的烧结性能、微观结构以及介电性能的影响。结果表明:当0<*m*<0.4 时, Bi³⁺取代 A₁位的 La³⁺生成单相类钨青铜型固溶体;当 Bi³⁺的掺杂量超过这个范围时,La_{0.176}Bi_{0.824}O_{1.5} 作为第二相 出现在固溶体中;Bi³⁺的掺入使 Ba_{6-3x}La_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(*x*=2/3)陶瓷的烧结温度从 1 400 ℃降低到 1 300 ℃, 同时,其介电常数大幅度提高,谐振频率温度系数减小,但品质因数急剧减小;当*m*=0.05 时,1 350 ℃下保温 2 h 烧结获得的陶瓷具有微波介电性能, ε_r =88.63,*Q:f*=4 395 GHz, τ_r =6.25×10⁻⁶/℃。

中图分类号: TQ174 文献标识码: A

Effects of Bi doping on sintering and dielectric characteristics of Ba_{6-3x}La_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(x=2/3) ceramics

GAO Xu-fang, QIU Tai

(College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009, China)

Abstract: The sintering properties, microstructures and dielectric characteristics of $Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})_{18}O_{54}$ (*x*=2/3) microwave dielectric ceramics prepared by conventional solid-state route were studied. The results show that Bi³⁺ replaced La³⁺ into A₁ rhombic sites and a single-phase solid solution with tungstenbronze-like structure formed in the range of 0 < m < 0.4. When Bi³⁺ content exceeds this range, a second phase of La_{0.176}Bi_{0.824}O_{1.5} appears in the solid solution. Bi doping can lower the sintering temperature of Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(*x*=2/3) ceramics from 1 400 °C to 1 300 °C, while a significant improvement of dielectric constant is achieved. The temperature coefficient of resonant frequency (τ_f) decreases, and the quality factor (*Q*:*f*) rapidly decreases. When *m*=0.05, the optimal microwave dielectric characteristics are achieved as ε_r =88.63, *Q*:*f*=4 395 GHz, τ_r =6.25×10⁻⁶/°C.

Key words: dielectric property; Bi doping; microwave dielectric ceramics; tungstenbronze-like structure

BaO-Ln₂O₃-TiO₂系陶瓷是一类性能较好的高介电 常数(ε_r)微波介质材料,其介电常数为80~110,品质因 数为1 800~10 000 GHz,谐振频率温度系数小^[1],适用 于民用移动通讯设备。该体系陶瓷具有类钨青铜型结 构:TiO₆八面体以顶角相连构成空间网络,Ti⁴⁺占据B 位,Ba²⁺占据A₂位五边形空隙,A₁位四边形空隙由Ba²⁺ 和稀土离子共同占据,尺寸最小的三角形空隙一般不 被本体离子占据^[2]。

在 BaO-Ln₂O₃-TiO₂ 体系中, Ba_{6-3x}La_{8+2x}Ti₁₈O₅₄ (x=2/3)陶瓷具有最高的介电常数(~110),这利于材料 的小型化,但其品质因数(Q:f,其中 Q 为品质因子, f 为频率)较小(~1 800 GHz)且谐振频率温度系数(τ_f)为 较大的正值(~300×10⁻⁶/°C)^[3],在实际生产中难以应 用,因此,有关研究较少。王美娜等^[4]研究表明,在

基金项目: 国防科工委军品配套项目

收稿日期: 2009-06-08; 修订日期: 2009-10-29

通信作者: 丘 泰,教授; 电话: 025-83587262; E-mail: qiutai@njut.edu.cn

Ba_{6-3x}La_{8+2x}Ti₁₈O₅₄ (x=1/2)陶瓷中掺杂ZrO₂,能大幅 度提高材料的品质因数,降低谐振频率温度系数,但 介电常数减小。Bi₂O₃是一种常见的助烧剂,适量添加 可以有效降低陶瓷的烧结温度,且Bi³⁺对微波介电性 能有显著的调节作用^[5-6],尤其是能提高其介电常数。

目前,对于 Ba_{6-3x}Ln_{8+2x}Ti₁₈O₅₄ 陶瓷的研究主要集 中在 A 位离子取代^[3,7],对 B 位取代研究得较少,且 单纯的 B 位取代很难获得综合性能较好的材料^[4,8-9]。 在该体系中,对于 Bi³⁺取代的是 A₁位的稀土离子还是 A₂位的 Ba²⁺目前还没有定论^[10-12]。因此,本文作者在 B 位 Zr 改性的基础上,研究 Bi 掺杂对 Ba_{6-3x}La_{8+2x}(Ti_{0.95}-Zr_{0.05})₁₈O₅₄(x=2/3)陶瓷的烧结性能、微观结构和介电性 能的影响规律,并探讨 Bi³⁺的取代情况。

1 实验

采用分析纯的BaCO₃、LaO₂、TiO₂、Bi₂O₃和ZrO₂ 为原料,用固相法制备Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}-Zr_{0.05})₁₈O₅₄(*x*=2/3, *m*=0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40)陶瓷。将原料按化学式配料,以无水乙醇 作为介质,球磨6h,过筛干燥,在1200 ℃预烧2h。 粉料过筛后加入5%(质量分数)的PVA造粒,压制成直 径为12 mm,厚度为5~6 mm的圆片。样品在1300~ 1400 ℃烧结,保温2h。

采用Archimede法测定样品的体积密度,用ARL X'TRA型X射线衍射仪(美国热电公司)进行物相分析, 用JSM-5900型扫描电镜(日本电子公司)观测显微结 构,用VANTAGE DSI型能谱分析仪(美国Noran公司) 对晶粒进行成分分析。用Hakki-Coleman介质柱谐振法 测量样品的高频微波介电性能,所用仪器为HP 8722ET网络分析仪,谐振模式为TE₀₁₁。联合采用LCR 测试仪和高低温实验箱测量不同温度的电容,用式(1) 计算频率温度系数:

$$\tau_{\rm f} = -\alpha - \tau_{\rm e}/2 \tag{1}$$

式中: τ_f 为1MHz下频率温度系数; τ_{ε} 为1MHz下介 电常数温度系数; α 为材料的线膨胀系数,这里, $\alpha \approx 10 \times 10^{-6}$ /C。

2 结果与讨论

2.1 陶瓷的烧结性能

图 1 所示为 Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄ (x=2/3)陶瓷在不同温度下烧结 2 h 的密度。由图 1 可 知,随烧结温度的升高,陶瓷的密度先增大后减小。 这是由于随着烧结温度的升高,晶粒生长,陶瓷致密 度增大。但是,当烧结温度过高时,陶瓷过烧,密度 略有下降。由图 1 还可以看到,随 Bi₂O₃掺杂量的增 加,陶瓷致密化温度降低。未掺杂 Bi₂O₃的陶瓷的最 佳烧结温度为 1 400 ℃。当 *m*<0.20 时,陶瓷的致密 化温度为 1 350 ℃;当*m*>0.20 时,陶瓷致密化温度 降到 1 300 ℃。这是由于过量的 Bi₂O₃会在烧成过程 中形成液相,适量的液相润湿固体颗粒,使颗粒间的 间隙形成毛细管,在毛细管压力的作用下,颗粒发生 重排,填实并排除部分气孔,促进陶瓷的致密化;同 时,液相的 Bi₂O₃能促进溶解-沉淀传质过程,从而降 低烧结温度。

图 1 Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(x=2/3)陶瓷在不 同温度烧结后的密度

Fig.1 Bulk densities of $Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})_{18}O_{54}$ (*x*=2/3) ceramics as function of sintering temperature

2.2 陶瓷的相组成及微观结构

图 2 所示为 $Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})_{18}O_{54}$ (x=2/3)陶瓷烧结体的 XRD 谱。对于没有掺杂和掺杂 少量 ZrO₂的 $Ba_{6-3x}La_{8+2x}Ti_{18}O_{54}(x=2/3)$ 陶瓷的 XRD 谱, 主要衍射峰可以用类钨青铜相(JCPDS 卡片 No.43— 117)进行标定,主晶相为 $Ba_{6-3x}La_{8+2x}Ti_{18}O_{54}$ 固溶体, 没有杂相。根据 XRD 数据可知,没有掺杂和掺杂少 量 ZrO₂ 的 $Ba_{6-3x}La_{8+2x}Ti_{18}O_{54}(x=2/3)$ 陶瓷的(231)晶面 衍射峰的 d 分别为 0.272 86 nm 和 0.273 47 nm。d 的 增大表明,离子半径较大的 Zr⁴⁺(0.072 nm)占据了 Ti⁴⁺(0.060 5 nm)^[13]的位置,从而导致原子间的间距增 大。随着 Bi_2O_3 掺杂量的增加,衍射峰的 2 θ 逐渐向低 角度方向偏移,衍射峰的移动表明 Bi^{3+} 进入了晶格。 当 m < 0.40 时,主晶相为固溶体,没有第二相;当 m=0.40 时,主要衍射峰的衍射强度变弱,(002)晶面的

图 2 Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(x=2/3) 陶 瓷 的 XRD 谱

Fig.2 XRD patterns of $Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})_{18}O_{54}$ (*x*=2/3) ceramics

衍射峰的强度加强,说明晶粒沿(002)晶面择优取向,此时,出现少量的 La_{0.176}Bi_{0.824}O_{1.5} 晶相的衍射峰,但主晶相仍为固溶体。

根据XRD谱中主要衍射峰的位置,按照Bragg方 程计算的正交结构的类钨青铜相的晶胞参数和晶胞体 积如表1所列。随着Bi₂O₃掺杂量的增加,晶胞参数和 晶胞体积相应增大,说明Bi³⁺在晶格中取代的是A₁位 的La³⁺而不是A₂位的Ba²⁺。这是因为12配位的Bi³⁺的半 径为0.138 nm,Ba²⁺的半径为0.161 nm,La³⁺的半径为 0.136 nm^[13],如果Bi³⁺取代的是半径大于它的Ba²⁺,晶 胞体积会减小,这与实验所得的结果矛盾,所以,Bi³⁺ **表1** Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(x=2/3)中类钨青铜 正交相的晶胞参数和晶胞体积

Table 1Lattice parameters and unit-cell volume of
orthorhombic tungsten bronze-like phase in
 $Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})_{18}O_{54}(x=2/3)$ ceramics

т	Lattice parameter/nm			Unit-cell
	а	b	С	volume/nm ³
0.05	2.222 6	1.231 7	0.382 91	1.048 2
0.10	2.225 4	1.233 1	0.383 37	1.052 0
0.15	2.226 1	1.231 6	0.383 76	1.052 2
0.20	2.238 9	1.234 0	0.385 11	1.064 0
0.25	2.239 6	1.236 3	0.385 39	1.067 0
0.30	2.238 8	1.237 8	0.385 45	1.068 2

在晶格中取代的是离子半径较小的La³⁺而不是离子半 径较大的Ba²⁺。

图3所示为Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄ (x=2/3)陶瓷在热腐蚀后的表面SEM照片。从图3可观察 到晶粒大小和微结构随着Bi³⁺含量的增加发生了明显 改变。对于未掺杂Bi₂O₃试样,大小不均的柱状晶粒排 列紧密,气孔很少,晶粒尺寸较小,横截面的平均直 径约为1 μm,长度为3~5 μm。随着Bi₂O₃掺杂量的增加, 晶粒变大,出现狭长的方柱状晶粒和少量片状晶粒。 当*m*=0.25时,个别晶粒异常长大,长度约为15 μm。 这与文献[10]报道的情况一致,Bi³⁺加入会造成晶粒异 常生长。由于Bi₂O₃熔化会形成液相,传质速度加快, 晶粒的生长速度加快,晶粒得到充分生长,容易生成 大晶粒。对图3中的*A、B*两区域作能谱分析,结果

图3 Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(x=2/3)陶瓷的SEM像 Fig.3 SEM images of Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(x=2/3): (a) Without Bi₂O₃; (b) m=0.10; (c) m=0.25; (d) m=0.30

如图 4 所示。区域 B 中除了 Ba、La、Ti 和 Zr 元素外, 还含有 Bi 元素,说明 Bi³⁺进入晶格生成了固溶体。

图 4 Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(x=2/3)陶瓷的 EDS 谱 Fig.4 EDS patterns of Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄ (x=2/3) ceramics shown in Fig.3: (a) Zone A; (b) Zone B

2.3 陶瓷的介电性能

图 5 所示为微波频率下烧结体的介电常数和品质 因数随 Bi₂O₃掺杂量的变化曲线。介电常数随着 Bi₂O₃ 掺杂量的增加先增大后减小,在 m=0.20 时获得最大 值,为 105.67。品质因数随 Bi₂O₃ 掺杂量的增加急剧 下降。钨青铜型结构陶瓷的介电常数一般受 TiO₆八面 体的体积、八面体沿 c 轴的倾角、稀土离子和钡离子 的极化率等因素影响^[14]。由 Clausius-Mossotti 方程可 知,介电常数与离子极化率成正比。Bi₂O,掺杂使 ε, 增大的一个原因是 Bi³⁺的极化率^[15]大于 La³⁺的极化 率: 其次是 Bi³⁺的离子半径大于 La³⁺的离子半径, 掺 杂后 Bi³⁺取代 La³⁺进入晶格,引起晶格常数变大,从 而为处于 TiO₆ 八面体中心的 Ti⁴⁺提供更大的位移空 间,有利于 Ti⁴⁺与 O²⁻之间耦合极化的进行,从而 ε_r 提高。当 m > 0.20 时, ε_r 急剧减小,这可能是 Bi₂O₃ 含量过大,在烧结过程中存在液相,冷却后在晶界内 形成了玻璃相的原因。通常,玻璃的 ε_r 为 6~15^[16],

图 5 Bi₂O₃ 掺杂量对 Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄ (x=2/3)陶瓷介电常数和品质因数的影响

Fig.5 Effect of Bi_2O_3 content to ε_r and Q:f of $Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})_{18}O_{54}(x=2/3)$ ceramics

当其存在于陶瓷中,根据固溶体陶瓷介电性能的经验 关系式:

$$\varepsilon_{\rm r}^{-1} = \varphi_1 \varepsilon_{\rm r1}^{-1} + \varphi_2 \varepsilon_{\rm r2}^{-1} \tag{2}$$

式中: φ_1 、 φ_2 分别为相1和2在材料中的体积分数; ε_{r1} 和 ε_{r2} 分别为相1和2的相对介电常数。由此可见,玻璃相的存在降低了材料的介电常数。

微波介电损耗分为本征损耗和非本征损耗。前者 代表对于某种材料能获得的最低损耗,与制备过程和 微观缺陷无关, 它取决于微波电磁场与晶格振动的非 简谐性项的相互作用。从本征损耗角度出发,大离子 半径的Bi³⁺取代A₁位的La³⁺,整个体系晶胞体积变大, 这样处于TiO₆八面体中心的Ti⁴⁺在微波电场中更容易 移动,微波电场与声子的相互作用增强,使得声子的 谐振式极化损耗增大。Bi³⁺在晶格中取代的是A1位的 La³⁺,较大的Bi³⁺在A₁位的固溶会造成晶格内部应力增 大,从而也会引起介电损耗增大。非本征损耗包括晶 界、缺陷、杂相、气孔等引起的损耗。通常,晶粒尺 寸越大,晶界越少,由晶界所引起的介电损耗就越低。 随着Bi₂O₃掺杂量的增加,晶粒变大,甚至出现晶粒的 异常长大、位错等缺陷的几率也增大,从而导致介电 损耗的增加。并且Bi³⁺在高温下容易蒸发形成空位^[17], 造成点缺陷,这样也会使介质损耗增大。

图 6 所示为烧结体在 1 MHz 下频率温度系数随 Bi₂O₃ 掺杂量的变化曲线。由图 6 可知:未掺杂 Bi₂O₃ 的陶瓷的 τ_f 为 81.99×10⁻⁶/°C; τ_f 随 Bi₂O₃掺杂量的增 加先减小后增大,在 m=0.05和 0.20 时 τ_f 接近于零; 当 m=0.05 时, $\tau_f=6.25\times10^{-6}/$ °C。Bi³⁺的最外层轨道 6s 上有 1 对孤对电子,周围氧离子配位的对称性较差, Bi³⁺在 A₁位中容易离开中心向一头偏移,而这种平衡 位置不止一处。当外加电场方向改变时,Bi³⁺可以从 一个平衡位置跃到另一个平衡位置,振动的空间范围 大,因而,具有很大的介电极化率。随着Bi³⁺掺杂量 的增加,晶格发生膨胀,A₁位空间增大,Bi³⁺的活动 空间变大,极化能力增加,介电常数逐渐上升,这就 表现出"正"的介电常数温度系数和"负"的谐振频 率温度系数。当Bi³⁺含量超过固溶限时,析出的 La_{0.176}Bi_{0.824}O₁₅晶相使温度系数向正值变化。

图6 Bi₂O₃掺杂量对Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(x=2/3) 陶瓷频率温度系数的影响

Fig.6 Effect of Bi_2O_3 content on τ_f of $Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}$ -(Ti_{0.95}Zr_{0.05})₁₈O₅₄(*x*=2/3) ceramics

3 结论

 对于 Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄(x=2/3)
陶瓷,当0<m<0.4时,Bi³⁺取代A₁位La³⁺生成单相
类钨青铜型固溶体;当 Bi³⁺的掺杂量超过这一范围, 会生成La_{0.176}Bi_{0.824}O_{1.5}第二相。

2) Bi 掺杂有效地促进 Ba_{6-3x}La_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈O₅₄ (x=2/3)陶瓷的烧结,烧结温度降低 100 ℃,同时, ε_r 随着 Bi₂O₃掺杂量的增加而大幅度提高, τ_f 减小,但 Q:f 下降。

 当 *m*=0.05 时, Ba_{6-3x}(La_{1-m}Bi_m)_{8+2x}(Ti_{0.95}Zr_{0.05})₁₈-O₅₄(*x*=2/3)陶瓷在1350 ℃下烧结2h获得较佳的微波 介电性能: ε_r=88.63, *Q*:*f*=4395 GHz, τ_f=6.25×10⁻⁶/℃。

REFERENCES

- VALANT M, SUVOROV D, RAWN C J. Intrinsic reasons for variations in dielectric properties of Ba_{6-3x}R_{8+2x}Ti₁₈O₅₄(R=La– Gd) solid solutions[J]. Jpn J Appl Phys, 1999, 38: 2820–2826.
- [2] MATVEEVA R G, VARFOLOMEEV M B, LL'YUSCHENKO L S. Refinement of the composition and crystal structure of Ba_{3.75}Pr_{9.5}Ti₁₈O₅₄[J]. Russ J Inorg Chem, 1984, 29: 17–19.

- [3] CHEN X M, QIN N, LI Y. Microstructures and microwave dielectric characteristics of Ba_{6-3x}(Sm_{1-y}La_y)_{8+2x}Ti₁₈O₅₄ solid solutions(x=2/3 and 0.75)[J]. J Electroceram, 2002, 9: 31–35.
- [4] 王美娜,高旭芳,丘 泰. ZrO₂添加对BaO-La₂O₃-TiO₂介质陶 资介电性能的影响[J].中国稀土学报,2008,26(2):153-157.
 WANG Mei-na, GAO Xu-fang, QIU Tai. Effects of ZrO₂ on dielectric properties of BaO-La₂O₃-TiO₂ microwave dielectric ceramics[J]. Journal of the Chinese Rare Earth Society, 2008, 26(2):153-157.
- [5] QIN N, CHEN X M. Effects of Sm/Bi co-substitution on microstructures and microwave dielectric characteristics of Ba_{6-3x}La_{8+2x}Ti₁₈O₅₄(x=2/3) solid solution[J]. Mater Sci Eng B, 2004, 111(1): 90–94.
- [7] ICHINOSE N, AMADA H. Preparation and microwave dielectric properties of the BaO-(Sm_{1-x}La_x)₂O₃-5TiO₂ ceramic system[J]. J Euro Ceram Soc, 2001, 21: 2751–2753.
- [8] AZOUGH F, LOWE T, FREER R. Control of microwave dielectric properties in the system BaO·Nd₂O₃·4TiO₂-BaO·Al₂O₃·4TiO₂[J]. J Electroceram, 2005, 15: 183–192.
- [10] WU Y J, CHEN X M. Modified Ba_{6-x}Nd_{8+2x}Ti₁₈O₅₄ microwave dielectric ceramics[J]. J Eur Ceram Soc, 1999, 19: 1123–1126.
- [11] ZHENG Y, ZHAO X Z, LEI W, WANG S X. Effects of Bi₂O₃ addition on the microstructures and microwave dielectric characteristics of Ba_{6-3x}(Sm_{0.2}Nd_{0.8})_{8+2x}Ti₁₈O₅₄(x=2/3)ceramics[J]. Materials Letters, 2006, 60: 459–463.
- [12] OKAWA T, IMAEDA M, OHSATO H. Microwave dielectric properties of Bi-added Ba₄Nd_{9+1/3}Ti₁₈O₅₄ solid solutions[J]. Japanese Journal of Applied Physics, 2000, 39(9B): 5645–5649.
- [13] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr A, 1976, 32: 751.
- [14] OHSATO H. Science of tungsten bronze-type Ba_{6-3x}R_{8+2x}Ti₁₈O₅₄(R=rare earth) microwave dielectric solid solutions[J]. J Euro Ceram Soc, 2001, 21: 2703–2711.
- [15] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. J Appl Phys, 1993, 73(1): 348–366.
- [16] TOSHIMI F, CHIHIRO S, MASAHIKD O. Preparation of Ba(Mg_{1/3}Ta_{2/3})O₃ ceramics as microwave dielectrics through alkoxide-hydroxide route[J]. J Mater Res, 1992, 7(7): 1883–1887.
- [17] OKAWA T, IMAEDA M, OHSATO H, HARADA A. Site occupancy of Bi ions and microwave dielectric properties in Bi-doped Ba_{6-3x}R_{8+2x}Ti₁₈O₅₄ (R=rare earth, x=2/3) solid solutions [J]. Materials Chemistry and Physics, 2003, 79: 199–203.

533

(编辑 杨 华)