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Initiation and propagation behavior of fatigue crack in 2524—-T34 alloy
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Abstract: The fatigue performance of 2524—T34 sheets was studied by four-point bend fatigue test. The fatigue crack
initiation and propagation behavior were observed by optical microscopy and scanning electron microscopy. The results
indicate that 2524 alloy shows superior fatigue properties. The fatigue strength is up to 80% of the yield strength. The
fatigue crack mainly initiates from the second phase particles and the interface between the second phase particles and
matrix. The crack plane deflection in the process of crack propagation relates to the resistance of the grain boundary. The

difference of crystallographic orientation between the two favoured slip planes within the two neighboring grains is an

important factor to control crack propagation across a grain boundary.
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Fig.1 Optical microstructure of 2524-T34 alloy
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Fig.2 SEM images showing distribution and composition of
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Fig.3 Stress—cycle number curve of 2524—T34 alloy
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Fig4 OM and SEM images showing fatigue crack initiation sites: (a), (b) OM images; (c), (d), (¢), (f) SEM images
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Fig.5 OM images showing propagation and deflection of fatigue crack
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Fig.6 SEM morphologies of fatigue fracture surfaces of alloy in high cycles with low stress (92.5%0y,): (a) Full view; (b) Early

propagation area; (c) Stable propagation area; (d) Fast fracture area
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Fig.7 SEM morphologies of fatigue fracture surfaces of alloy in low cycles with high stress (140%0y,): (a) Full view; (b) Early

propagation area; (c) Crack initiation on second phase; (d) Stable propagation area
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Fig.8 Schematic diagram showing propagation and deflection

of fatigue crack across grain boundary
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