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Effect of second phase on superplastic deformation of extruded rod
of Mg-Gd-Y-Zr alloy
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Abstract: The microstructures and superplastic behavior of the extruded rod of Mg-Gd-Y-Zr alloy before and after tensile
were investigated and analyzed by microscopy and XRD. And tensile tests at various temperatures and strain rates were
performed. The results show that the extruded rod exhibits the maximum elongation of 410% at 450 ‘C and 2X 105!
and the corresponding strain rate sensitivity of 0.54. The apparent activation energy for the superplastic flow is much
higher than the activation energy of grain boundary diffusion or lattice diffusion of magnesium. The high ductility is
attributable to grain boundary sliding accommodated by dislocation motion assisted by lattice diffusion. The
microstructural results show that the cavities nucleate at the interface between the matrix and the cuboidal Re-rich phase,
and that the deformable f phase relaxes the stress concentration at the interface by bearing the partial plastic strain.
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Fig.1 Photo of undeformed specimen and fractured specimen

exhibiting maximum elongation
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Fig.3 SEM image of as-extruded Mg-Gd-Y-Zr alloy rod and
EDS spectra of second phase particles a(b) and b(c)
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Fig.6 TEM images of fractured specimen tested at 450 ‘C and 2 X 10* s and corresponding SAED pattern: (a) Grain boundary

pinned by cuboidal Re-riched phase; (b) Dislocation pile-up and elongated f phase at triple junction; (c) SAED pattern for f phase;

(d) SAED pattern by zone axis along [21 10 ] of a-Mg matrix
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Fig.7 Apparent activation energy curves of superplastic

deformation of extruded rod of Mg-Gd-Y-Zr alloy
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Fig.8 Schematic diagram of superplastic deformation

mechanism for extruded rod of Mg-Gd-Y-Zr alloy
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