第 19 卷第 11 期 Vol.19 No.11

文章编号:1004-0609(2009)11-2018-06

La₂O₃掺杂对二硅酸锂微晶玻璃析晶行为和力学性能的影响

罗志伟^{1,2}, 卢安贤^{1,2}, 韩立国^{1,2}

(1. 中南大学 材料科学与工程学院,长沙 410083;

2. 中南大学 有色金属材料科学与工程教育部重点实验室,长沙 410083)

摘 要:以 P_2O_5 和 ZrO₂ 为复合成核剂 Sb₂O₃为澄清剂 通过传统熔体冷却法制得掺稀土 La₂O₃的 SiO₂-Li₂O-K₂O-B₂O₃系统基础玻璃。利用 DSC、XRD、SEM 和力学性能测试等方法研究 La₂O₃含量对玻璃析晶行为、析出晶相 种类及微晶玻璃力学性能的影响。结果表明:La₂O₃含量对基础玻璃的第一析晶峰对应的温度影响较大,对第二 析晶峰对应的温度影响不明显;当 La₂O₃的含量小于 0.40%(摩尔分数)时,La₂O₃的引入不改变微晶玻璃主晶相类 型;当 La₂O₃含量增加到 0.80%时,La₂O₃ 直接参与晶相组成,析出 LaPO₄ 晶相;同时,La₂O₃ 的引入提高了二硅 酸锂晶相的析出温度;当 La₂O₃含量为 0.40%时,微晶玻璃的抗弯强度和弹性模量达到最高值,分别为 328 MPa 和 143 GPa;当 La₂O₃含量小于 0.40%和大于 1.20%时,微晶玻璃的断裂韧性随 La₂O₃的增加变化较小;当 La₂O₃ 含量为 0.40%~1.20%时,微晶玻璃的断裂韧性随 La₂O₃含量的增加而大幅度增加,最大断裂韧性达到 3.34 MPa·m^{1/2}。 关键词:氧化镧;二硅酸锂;微晶玻璃;力学性能 中图分类号:TQ 171 文献标识码:A

Effects of doping La₂O₃ on crystallization and mechanical properties of lithium disilicate glass-ceramics

LUO Zhi-wei^{1, 2}, LU An-xian^{1, 2}, HAN Li-guo^{1, 2}

(1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;

2. Key Laboratory of Non-ferrous Metal Materials Science and Engineering, Ministry of Education,

Central South University, Changsha 410083, China)

Abstract: The SiO₂-Li₂O-K₂O-B₂O₃ glasses doping La₂O₃ were prepared by traditional melting quenching method, using P_2O_5 and ZrO₂ as complex nucleating agent and Sb₂O₃ as clarifying agent. The effects of La₂O₃ content on the crystallization behavior, the crystalline phase and the mechanical properties of the glass-ceramics were investigated by using of DSC, XRD, SEM and mechanical property tester. The results show that, the change of La₂O₃ content mainly influences the exothermic peak temperature rather than the second exothermic peak temperature. When La₂O₃ content is lower than 0.40% (mole fraction), the doping content of La₂O₃ does not change the main crystal phase type in the glass-ceramics. However, when the La₂O₃ content increases to 0.80%, the La₂O₃ directly involves in the lattice construction of LaPO₄ micro-crystals. At the same time, La₂O₃ doping increases the precipitation temperature of Li₂Si₂O₅ phase. When the La₂O₃ content is 0.40%, the glass-ceramics has the highest bending strength and elastic modulus, which are 328 MPa and 143 GPa, respectively. When La₂O₃ content is lower than 0.40% and higher than 1.20%, the fracture toughness increases obviously with increasing La₂O₃ content, the biggest fracture toughness of the glass-ceramics reaches up to 3.34 MPa·m^{1/2}.

Key words: La2O3; lithium disilicate; glass-ceramics; mechanical properties

基金项目:国防军工新材料资助项目(JPPT-115-329)

收稿日期:2009-01-16;修订日期:2009-05-20

通信作者:卢安贤,教授,博士;电话:0731-88830351;E-mail:axlu@mail.csu.edu.cn

以二硅酸锂为主晶相的微晶玻璃具有较高的机械 强度^[1]、优良的可机械加工性能、良好的化学稳定性 以及完美的半透明光泽,广泛应用于牙齿修复、磁盘 基板等方面。国内外对含二硅酸锂晶相的微晶玻璃已 有较多的研究,如CLAUSBRUCH等^[2]、APEL等^[3]、 HOLAND 等^[4]和 ZHENG 等^[5-6]分别研究 P₂O₅、 ZrO₂ 及热处理制度等对多元二硅酸锂系统微晶玻璃析晶及 力学性能的影响,这些研究从不同的角度探讨以二硅 酸锂为主晶相的一类微晶玻璃,并试图通过改变工艺 参数以提高其力学性能,同时发现偏硅酸锂作为过渡 的亚稳相并在进一步的热处理后转变成稳定的二硅酸 锂晶相。此外,也有一些更早期的研究涉及二硅酸锂 微晶玻璃的析晶机理^[7-10]。在力学性能研究方面,对 二硅酸锂系微晶玻璃的抗弯强度研究较多,但对其断 裂韧性的研究较少。目前,对于微晶玻璃的增韧已有 一定的研究^[11–14],如表面强化增韧、纤维增韧、金属 颗粒增韧、ZrO2增韧和自增韧等。其中,ZrO2增韧微 晶玻璃的研究近年来引起了人们的重视,但由于 ZrO2 在玻璃中的溶解度较小,使得 ZrO2 的增韧作用十分有 限。而稀土 La2O3 在一些玻璃中有较大的溶解度,且 可大幅度地增加微晶玻璃(如 MgO-Al₂O₃- SiO₂-TiO₂) 的断裂韧性^[15],有可能克服 ZrO2在玻璃系统中溶解度 较小这一弱点。

本研究以 SiO₂-Li₂O-K₂O-B₂O₃ 为基础玻璃组成, P₂O₅ 和 ZrO₂ 为复合形核剂, Sb₂O₃ 为澄清剂,研究 La₂O₃ 的引入及其含量变化对微晶玻璃析晶行为以及 力学性能的影响,以期通过添加稀土氧化物来改善该 体系微晶玻璃的力学性能,获得高强度、高韧性微晶 玻璃材料的制备技术并拓展其应用领域。

1 实验

1.1 基础玻璃的制备

本研究以 SiO₂-B₂O₃-Li₂O-K₂O 为基础玻璃系统, P₂O₅ 为形核剂, Sb₂O₃ 为澄清剂,研究 La₂O₃ 含量的变 化对玻璃析晶行为和力学性能的影响。其中,SiO₂和 ZrO₂ 为分析纯氧化物,La₂O₃ 采用湖南稀土研究所生 产的 5N 试剂,而 B₂O₃、P₂O₅、K₂O 和 Li₂O 分别由分 析纯的 H₃BO₃、(NH₄)₂HPO₄、K₂CO₃和 Li₂CO₃引入, SiO₂和 Li₂O 的摩尔比固定为 2.40:1,引入 La₂O₃的含 量(摩尔分数)分别为 0、0.40%、0.80%、1.19%和 1.58%, 对应的试样编号分别为 0、1、2、3 和 4。

表1 基础玻璃的化学组成

 Table 1
 Compositions of precursor glasses

Sample No.	Mole fraction/%						
	B_2O_3	SiO ₂	P_2O_5	K_2O	Li ₂ O	ZrO_2	La ₂ O ₃
0	2.33	65.50	1.16	1.80	27.31	1.90	0.00
1	2.32	65.24	1.16	1.79	27.20	1.89	0.40
2	2.31	64.98	1.16	1.78	27.09	1.88	0.80
3	2.30	64.72	1.15	1.78	26.98	1.88	1.19
4	2.29	64.47	1.15	1.77	26.88	1.87	1.58

根据表 1 所列的玻璃化学组成,得出对应原料的 引入量。准确称取各配方相应的原料,按 200 g 玻璃 配制混合料。将混合料充分研磨、混匀,过孔径为 0.2 mm 的筛,然后置于 500 mL 石英坩锅中,在硅钼电炉 中以 3 /min 的升温速率升到 1 500 ,保温 3 h,出 料后迅速倒入不锈钢模具中,移至电阻炉中在 500 温度下退火 0.5 h,随炉冷却到室温。

1.2 差热分析(DSC)

将基础玻璃样品用玛瑙研钵研磨成粉末,过孔径 为 74 μm 的筛,采用德国耐驰公司生产的 NETZSCH STA 449C 型热分析仪进行差热分析。实验气氛为氩 气,升温速率为 10 /min,测试温度范围为室温至 1000 。

1.3 微晶玻璃的制备

根据 DSC 测试结果,确定基础玻璃的核化温度为 525 ,晶化温度高于 650 。将制得的基础玻璃在 电阻炉中进行核化和晶化处理,升温速率为 5 /min, 然后随炉冷却到室温。

1.4 X 射线衍射分析(XRD)

将制得的微晶玻璃制成粉末,过孔径为 50 μm 的 筛,采用日本理学电机株式会社生产的 Rigaku D/max 2550 PC 型全自动 X 射线衍射仪测定各个样品的 X 射 线衍射图谱。实验条件:Cu 靶,扫描范围 10°~80°, 扫描速度为 8 (°)/min,测试温度为室温。

1.5 显微结构观察(SEM)

取表面洁净的小块微晶玻璃试样,在5%HF溶液 浸泡3min腐蚀,利用去离子水清洗后喷金处理,用 KYKY-2800型扫描电子显微镜观察样品的显微结 构。

1.6 力学性能测试

采用三点弯曲法测量微晶玻璃样品的抗弯强度,

样品尺寸为 4 mm × 4 mm × 30mm,跨距为 25 mm,在 测试试样抗折强度的同时利用静态声波法测量玻璃的 弹性模量。用单边切口梁法测定断裂韧性 K_{IC} ,样品 尺寸为 25 mm × 2 mm × 4 mm,试件中央开一个宽 0.2 mm、深 2 mm 的切口。抗弯强度和断裂韧性均取 3 次 测试的平均值。

2 结果与分析

2.1 La₂O₃对基础玻璃析晶行为的影响

玻璃样品的 DSC 曲线如图 1 所示。从图 1 中可以 看出,各试样的玻璃转变温度(θ)都在500 左右,且 随着 La₂O₃ 含量的增加略微有上升。各样品均有明显 的放热峰,表明都有较强的析晶倾向。其中,玻璃样 品 0、1 和 2 有两个明显的放热峰(第一析晶峰和第二 析晶峰) 样品 3 和 4 的第一析晶峰很微弱 随着 La_2O_3 含量的增加,第一析晶峰对应的温度也增大,且增加 幅度较大,而第二析晶峰温度略有增加,但变化不是 很明显。由表 2 可看出,当 La2O3 的摩尔分数从 0 增 加到 1.58%时, 第一析晶峰温度值由 637.9 上升到 增幅为94.2 732.1 :第二析晶峰温度由779.0 上升到 798.7 , 增幅只有 19.7 。

图 1 玻璃样品的 DSC 曲线

Fig.1 DSC curve of glasses samples studied

总体上看, La₂O₃ 的引入起抑制该系统玻璃析晶 的作用,随着 La₂O₃ 含量的增加,玻璃的析晶变得更 加困难。这是因为 La³⁺离子进入玻璃的网络结构中, 提高网络连接程度,使玻璃的结构更加致密,玻璃的 析晶活化能增大^[16]。UHLMANN^[17]认为,析晶初始温 度 θ_s 与玻璃转变温度 θ_g 的差值可以反映玻璃的稳定 性, $(\theta_s - \theta_g)$ 越大,玻璃越稳定。所以,在玻璃中加入 少量的 La_2O_3 后,会降低玻璃的析晶倾向,使玻璃的 稳定性提高。从表 2 还可以看出,从试样 0 到 3,样 品的析晶峰温度幅度变化很大,而试样 3 到 4 的析晶 峰温度变化幅度则较小。这表明当 La_2O_3 的含量低于 0.80%时, La_2O_3 含量的增加对玻璃的析晶有较大的抑 制作用;而当 La_2O_3 含量高于 0.80%时,继续增加 La_2O_3 含量,对玻璃析晶的影响逐渐减弱。可能的原因是由 于当 La^{3+} 达到一定浓度后,多余的 La^{3+} 不再进入玻璃 网络结构,而是作为网络外体离子进入网络空隙,使 玻璃粘度有所下降,因此, La_2O_3 含量增加对析晶的 影响也就不是很明显。

由于第一析晶峰对应的晶相为偏硅酸锂,第二析 晶峰对应的晶相为二硅酸锂以及偏硅酸锂向二硅酸锂 转变^[3-6]。因此,La₂O₃的引入对偏硅酸锂晶相的析出 有较大影响,而对二硅酸锂析出的作用较弱。

表 2 玻璃样品 DSC 测试的特征温度值

Table 2Characteristic temperatures of glasses samplesanalyzed by DSC

Sample No.	Glass transformation temperature, $\theta_{g'}$	First exothermic peak, $\theta_1/$	Second exothermic peak, $\theta_2/$
0	488.1	637.9	779.0
1	493.2	658.4	778.4
2	498.1	699.1	789.0
3	504.8	729.6	796.6
4	503.9	732.1	798.7

2.2 La₂O₃含量对微晶玻璃析出物相的影响

根据样品 DSC 曲线显示的特征温度并参考相关 资料,确定玻璃的热处理制度如表3所列。

表 3 玻璃样品的热处理制度

Table 3	Heat treatment sc	hedul	le of g	lasses	sampl	e
---------	-------------------	-------	---------	--------	-------	---

Sample	Nucleation	Crystallization			
0-2	525 , 1 h	650 , 1 h +780 , 2 h			
3-4	525 , 1 h	730 , 1 h +800 , 2 h			

按表 3 所列的热处理温度对基础玻璃进行热处 理,得到微晶玻璃样品的 XRD 谱如图 2 所示。由图 2 可知,在表 3 所列热处理制度下,各试样微晶玻璃析 出的主晶相都为二硅酸锂,没有出现偏硅酸锂晶相, 表明偏硅酸锂只是一个高温下不稳定的晶相,在高温 下,偏硅酸锂将转变成二硅酸锂晶体;次晶相随着 La₂O₃ 含量的增加发生变化。当样品中不含 La₂O₃ 时, 析出的次晶相为 β -方石英, La₂O₃ 含量为 0.40%时,次 晶相为磷石英和 α -石英晶体。由文献[18]可知,非晶 态的 SiO₂转变成磷石英和石英晶体的温度较低, β -方 石英的转变温度相对较难。La₂O₃ 的加入使高温型 β -方石英晶体的析出变得困难,转而析出低温型的磷石 英和石英晶体。当 La₂O₃ 含量达到 0.80%时,除了主 晶相二硅酸锂和次晶相磷石英外,同时还析出另外一 个晶相磷酸镧,且随 La₂O₃ 含量的增加,磷酸镧晶相 的含量继续提高。

因此,当样品中 La₂O₃的含量较低时(0.40%), La₂O₃并没有改变微晶玻璃的主晶相组成,也没有参 与晶相的形成,而是存在于玻璃相中;随着 La₂O₃含 量的进一步的增加(0.80%),La₂O₃开始参与晶相组 成,并以磷酸镧晶相的形式析出。总体上看,La₂O₃ 的引入使主晶相二硅酸锂的析出温度升高,使次晶相 β-方石英的析出变得困难,转而析出低温型的磷 石英。

图 2 微晶玻璃样品 0~4 的 XRD 谱

Fig.2 XRD patterns of glass-ceramics samples 0-4

2.3 La₂O₃对微晶玻璃显微结构及力学性能的影响

微晶玻璃样品的力学性能测试结果如图 3 所示。 从图 3 可以看出,微晶玻璃的抗弯强度和弹性模量都 呈先显著增加,接着明显降低,最后趋于缓慢变化的 趋势。当 La₂O₃ 含量为 0.40%时,抗弯强度和弹性模 量达到最高值,分别为 328 MPa 和 143 GPa;但随着 La₂O₃ 含量的继续增加,抗弯强度和弹性模量开始下 降,La₂O₃ 含量达到 0.80%以上时,抗弯强度和弹性模 量反而比不含 La₂O₃ 微晶玻璃的低;当 La₂O₃ 含量为 0~0.40%时,微晶玻璃的断裂韧性随 La₂O₃ 的增加略微 增加;当 La₂O₃ 含量大于 1.20%时,微晶玻璃的断裂 韧性略微减小;微晶玻璃的断裂韧性随 La_2O_3 的增加 变化逐渐减小;而 La_2O_3 含量为 0.40%~1.20%时,玻 璃的断裂韧性随 La_2O_3 含量的增加而大幅度增加,最 大断裂韧性达到 3.34 MPa·m^{1/2}。

图 4 所示为微晶玻璃试样的 SEM 像。由图 4(a) 和(b)可以看出,样品 0 和 1 中大量析出的是类似球状 的二硅酸锂晶体,直径大约在 0.1~0.5 μm 之间,实际

上每一个球状的晶体又是由更小的晶粒聚集形成的, 二硅酸锂晶体的间隙中含有少量的方石英晶体、磷石 英或石英晶体。由图 4(c)、(d)和(e)可看出,细小的晶 粒聚集组成较大的晶体,细小晶粒的尺寸较小,但聚 集体的尺寸相对较大,同时,微晶玻璃中还有一些纤 维状的聚集体存在。

从显微结构分析可知,样品0和1的晶粒为球状, 且分布均匀,所以抗弯强度和弹性模量较大。样品2、 3和4的晶体较为粗大,与残余玻璃相间的热膨胀系 数差也较大,容易出现缺陷,所以抗弯强度和弹性模 量反而下降。另一方面,由于有一些纤维状的聚集体 存在,能够起到类似纤维增韧或者晶须增韧的作用, 从而使样品2、3和4有较大的断裂韧性。

BRODKIN 等^[19]指出:当二硅酸锂微晶玻璃中的 偏硅酸锂和 β-方石英晶相不存在或极少存在时,正磷 酸锂晶相的体积分数小于 5%,二硅酸锂晶相的体积 分数在 35%~60%之间,微晶玻璃具有最佳的抗弯强 度。本研究的微晶玻璃析出的主晶相都只有二硅酸锂 晶体,且含量较高,没有偏硅酸锂晶相,且正磷酸锂 和方石英晶相均较少,因此,抗弯强度都比普通微晶 玻璃高(不小于 200 MPa),最高可达 328 MPa。

综合上述力学性能可知,在微晶玻璃系统中加入 少量 La₂O₃(0.40%)能大幅度提高微晶玻璃的抗弯强度 和弹性模量;继续增加 La₂O₃的含量,微晶玻璃的抗 弯强度和弹性模量值反而下降。另一方面,加入 La₂O₃ 的含量高于 0.80%时,较大提高微晶玻璃的断裂韧性; 继续增加 La₂O₃ 的含量,断裂韧性变化不很明显。

3 结论

 1) 随着 La₂O₃ 含量的增加,基础玻璃的第一析晶 峰温度逐渐上升,峰形变宽变钝并趋于消失,第二析 晶峰温度逐渐小幅度上升,但峰形变化不明显。

2) La₂O₃ 的含量不大于 0.40%时, La₂O₃ 并没有改 变微晶玻璃的主晶相组成,也不参与晶相的组成;当 La₂O₃ 含量增加到 0.80%以上时,La₂O₃ 参与晶相组成, 并以磷酸镧晶相的形式析出。 3) La₂O₃ 的引入提高亚稳态的偏硅酸锂晶体向二
 硅酸锂稳定相转变的温度,使β-方石英晶体的析出变
 得困难,而以磷石英和石英的形式从玻璃中析出。

4) 当 La_2O_3 含量为 0.40%时,微晶玻璃的抗弯强 度和弹性模量达到最高值,分别为 328 MPa 和 143 GPa;当 La_2O_3 含量小于 0.40%和大于 1.20%时,微晶 玻璃的断裂韧性随 La_2O_3 的增加变化较小;当 La_2O_3 含量为 0.40%~1.20%时,微晶玻璃的断裂韧性随 La_2O_3 含量的增加而大幅度增加,最大断裂韧性达到 3.34 MPa·m^{1/2}。

REFERENCES

- MCMILAN P W. 微晶玻璃[M]. 王仞千, 译. 北京: 中国建筑 工业出版社, 1988: 183.
 MCMILAN P W. Glass ceramics[M]. WANG Ren-qian, transl. Being: China Architecture Press, 1988: 183.
- [2] CLAUSBRUCH S C, SCHWEIGER M, HOLAND W, RHEINBERGER V. The effect of P₂O₅ on the crystallization and microstructure of glass-ceramics in the SiO₂-Li₂O-K₂O-ZnO-P₂O₅ system[J]. Journal of Non-Crystalline Solids, 2000, 263/264: 388–394.
- [3] APEL E, HOEN C, RHEINBERGER V, HOLAND W. Influence of ZrO_2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system[J]. Journal of the European Ceramic Society, 2007, 27(2/3): 1571–1577.
- [4] HOLAND W, APEL E, HOEN C, RHEINBERGER V. Studies of crystal phase formations in high-strength lithium disilicate glass-ceramics[J]. Journal of Non-Crystalline Solids, 2006, 352(38/39): 4041–4050.
- [5] ZHENG X, WEN G W, SONG L, HUANG X X. Effects of P₂O₅ and heat treatment on crystallization and microstructure in lithium disilicate glass ceramics[J]. Acta Materialia, 2008, 56(3): 549–558.
- [6] ZHENG X, WEN G W, SONG L. Effects of P₂O₅ and sintering temperature on microstructure and mechanical properties of lithium disilicate glass-ceramics[J]. Acta Materialia, 2007, 55(6): 3583–3591.
- [7] FUSS T, RAY C S, LESHER C E, DAY D E. In situ crystallization of lithium disilicate glass: Effect of pressure on crystal growth rate[J]. Journal of Non-Crystalline Solids, 2006, 352(21/22): 2073–2081.
- [8] KUCHLER R, KANERT O, VEREGET T, JAIN H. Effect of devitrification on ion motion in lithium-disilicate glass[J]. Journal of Non-Crystalline Solids, 2007, 353(43): 3940–3946.
- [9] ANSPACH O, KEDING R, RUSSEL C. Oriented lithium disilicate glass-ceramics prepared by electrochemically induced nucleation[J]. Journal of Non-Crystalline Solids, 2005, 351(8/9):

656-662.

- [10] SOARES P C, ZANOTTO E D, FOKIN V M, JAIN H. TEM and XRD study of early crystallization of lithium disilicate glasses[J]. Journal of Non-Crystalline Solids, 2003, 331(1/3): 217–227.
- [11] 程慷果,万菊林,梁开明.云母微晶玻璃的热压强化和韧化
 [J]. 硅酸盐学报,1998,26(3):403-406.
 CHENG Kang-guo, WAN Ju-lin, LIANG Kai-ming.
 Strengthening and toughening of Mica-containing glass-ceramics
 by hot-pressing technique[J]. Journal of the Chinese Ceramic
 Society, 1998, 26(3): 403-406.
- [12] 孙孝华, 王开志, 刘良先, 曹显良, 李胜旗, 王明东. SiC 晶须 增韧的钨尾矿微晶玻璃[J]. 中国有色金属学报, 1997, 7(4): 106-109.
 SUN Xiao-hua, WANG Kai-zhi, LIU Liang-xian, CAO

Xian-liang, LI Sheng-qi, WANG Ming-dong. SiC whisker toughened tungsten tailings glass-ceramics[J]. The Chinese Journal of Nonferrous Metals, 1997, 7(4): 106–109.

- [13] 程慷果,万菊林,梁开明.氧化锆增韧微晶玻璃的制备[J]. 硅酸盐学报,1998,26(3):365-368.
 CHENG Kang-guo, WAN Ju-lin, LIANG Kai-ming. Fabrication of ZrO₂ toughened glass-ceramics[J]. Journal of the Chinese Ceramic Society, 1998, 26(3):365-368.
- [14] 罗学涛, 张立同. 氮化硅陶瓷自增韧技术进展[J]. 复合材料 学报, 1997, 14(3): 1-8.
 LUO Xue-tao, ZHANG Li-tong. Technological development of in-situ toughened silicon nitride ceramics[J]. Acta Materiae Compositae Sinica, 1997, 14(3): 1-8.
- [15] 迟玉山,沈菊云,陈学贤,缪之训. La₂O₃在 MgO-Al₂O₃-SiO₂-TiO₂ 微晶玻璃中的作用[J]. 无机材料学报, 2002, 17(2): 348-352.
 CHI Yu-shan, SHEN Ju-yun, CHEN Xue-xian, MIU Zhi-xun.
 Role of La₂O₃ in MgO-Al₂O₃-SiO₂-TiO₂ glass-ceramics[J].
 Journal of Inorganic Materials, 2002, 17(2): 348-352.
- [16] 满金仓,南雪景,谷秀梅.Li₂O、La₂O₃ 含量对 Li₂O-La₂O₃-Ta₂O₅-SiO₂ 系统玻璃析晶性能的影响[J].大连轻 工业学院学报,2000,19(3):161-163.
 MAN Jin-cang, NAN Xue-jing, GU Xiu-mei. Effect of Li₂O and La₂O₃ content on the crystallization of Li₂O-La₂O₃-Ta₂O₅-SiO₂ system glass[J]. Journal of Dalian Institute of Light Industry, 2000, 19(3): 161-163.
- [17] UHLMANN D R. Glass formation[J]. J Non-Cryst Solids, 1977, 25(1): 42–85.
- [18] 肖万生,陈晋阳,彭文世,翁克难.方石英的亚稳态形成机制 探讨[J]. 矿物岩石,2003,23(4):5-10.
 XIAO Wan-sheng, CHEN Jin-yang, PENG Wen-shi, WENG Ke-nan. Discussion on metastable formation mechanism of cristobalite[J]. Journal of Mineral Petrol, 2003, 23(4): 5-10.
- [19] BRODKIN D, ORANGE W, PANZERA C, MEAD B, PANZERA P, HOLLY M. lithium disilicate glass-ceramics. US 6802894 B2[P]. 2004–10–12.