2009年11月 Nov. 2009

文章编号:1004-0609(2009)11-2000-06

Laves 相 NbCr₂ 金属间化合物的缺陷结构及其韧化效应

聂小武 1 ,谢 珊 2 ,何 燕 1 ,鲁世强 3 ,王克鲁 3

- (1. 湖南铁路科技职业技术学院 机械系, 株洲 412000;
- 2. 湖南化工职业技术学院 基础科学系,株洲 412004;
- 3. 南昌航空大学 材料科学与工程学院, 南昌 330063)

摘 要:采用机械合金化和热压粉末冶金工艺制备 Laves 相 NbCr, 合金试样,应用 X 射线和密度测量法研究在 Laves 相固溶度范围内(即 Cr 含量为 61%-69%(摩尔分数))NbCr₂ 金属间化合物的缺陷结构 , 并对 Laves 相 NbCr₂ 金属间化合物中的缺陷结构与其力学性能的关系进行分析。结果表明: 当 Laves 相 NbCr, 成分偏离化学计量比为 33.3%Nb~66.7%Cr 时,合金中存在反位置缺陷;与其它结构的金属间化合物不同,NbCr₂的显微硬度在化学计量 处取得最大值 $9.41~\mathrm{kN/mm^2}$,断裂韧性在化学计量比处最小为 $5.55~\mathrm{MPa\cdot m^{1/2}}$;随成分偏离化学计量比, $\mathrm{NbCr_2}$ 脆 性度逐渐降低,缺陷的存在对NbCr。具有韧化作用。

关键词:Laves 相 NbCr2;点缺陷;维氏硬度;断裂韧性 中图分类号: TG 146.2; TF 122.5 文献标识码:A

Defect structure in NbCr₂ Laves-phase intermetallics and its toughening effect

NIE Xiao-wu¹, XIE Shan², HE Yan¹, LU Shi-qiang³, WANG Ke-lu³

- (1. Department of Mechanical Engineering, Hunan Vocational College of Railway Technology, Zhuzhou 412000, China;
- 2. Department of Basic Science, Hunan Chemical Industry Vocational Technology Institute, Zhuzhou 412004, China;
 - 3. School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China)

Abstract: NbCr2 composite materials were prepared by mechanical alloying and hot pressing. The relationship between the defect structure and mechanical properties in the NbCr2 Laves-phase compound was discussed. The defect structures of NbCr₂ alloys in the Laves-phase solubility ranges (i.e. the Cr contents range is 61%–69% (mole fraction)) were studied by XRD and density measurement methods. The results show that the anti-site defects exist in the NbCr2 Laves-phase intermetallics when its composition deviates from the stoichiometric composition (33.3%Nb-66.7%Cr). The maximum hardness of 9.41 kN/mm² and minimum fracture toughness of 5.55 MPa·m^{1/2} occur in the stoichiometric composition, which is not similar with the behavior of most other intermetallic compounds. Meanwhile, the brittleness of the compound decreases when the composition deviates from the stoichiometry. The presence of point defects results in toughening effect in the NbCr₂ Laves-phase, which is contrary to the behavior of most other intermetallic compounds.

Key words: NbCr₂ Laves-phase; point defect; Vicker hardness; fracture toughness

具有很高的熔点(1 770)和适当的密度(约 7.7

合金元素 Cr 与难熔金属 Nb 形成的 Laves 相 $NbCr_2 = g/cm^3$),而且由于大量 Cr 的存在,使这类化合物具有 非常好的潜在的高温抗氧化性、热腐蚀力及蠕变性

收稿日期:2008-11-25;修订日期:2009-07-16

通信作者: 聂小武, 硕士; 电话: 0731-22777049; E-mail: niexiaowu6567@sina.com

能,成为航空发动机用候选结构材料之一 $^{[1-4]}$,使用温度可望超过 1 2 3 。虽然这类 Laves 相 3 3 3 4

缺陷结构会影响合金的物理冶金及力学性 能 $^{[11-12]}$, 因此, 研究 Laves 相 Nb Cr_2 的缺陷结构有助 于深入探索改善合金脆性的方法。对于 Laves 相 NbCro 偏离计量比成分时的缺陷结构, THOMA 等[13]的研究 结果表明,在 Laves 相溶解度范围内富 Nb 的合金具 有空位缺陷,而富 Cr 的合金具有反位置缺陷;而 ZHU 等[11-12]的研究结果表明,在计量比成分的两侧(即富 Nb 和富 Cr)合金都是反位置缺陷,从已有的研究中难 以获悉 NbCr₂ 合金的缺陷结构。上述研究所采用的试 样都是用熔铸法制备的,由于 Nb 和 Cr 的熔点分别为 2 469 和 1 863 两者相差很大 且 Cr 在 1 200 以上易挥发,导致采用熔铸法很难制备出无偏析、组 织均匀的 Laves 相 NbCr2合金,这会给研究结果带来 一定的误差。而利用粉末冶金工艺制备试样则可克服 这一缺点。

本文作者利用机械合金化(MA)和热压(HP)的粉末冶金工艺制备试样,应用 X 射线和密度测量法研究 C15 结构的 Laves 相 $NbCr_2$ 金属间化合物的点缺陷结构 利用压痕诱发裂纹的长度来测量材料的断裂韧性,并进一步研究 Laves 相 $NbCr_2$ 金属间化合物中缺陷与其力学性能之间的关系,为 Laves 相 $NbCr_2$ 金属间化合物的工程实际运用提供理论支撑。

1 实验

实验原料为纯度大于 99%(质量比)Cr 粉(< 150 μ m)和 Nb 粉(< 150 μ m),化学成分列于表 1。MA 在 QM- ISP2-CL 型行星式高能球磨机上进行。球磨罐容 积为 2 L,材质为不锈钢,参照作者前期的研究结果[14-15],球料比定为 13:1,转速为 400 r/min,球磨介质为不锈钢圆球。将称量后的粉末混合均匀后与球磨

介质装入球磨罐中并密封,抽真空后充入高纯氩气, 再抽真空,反复3次,使球磨罐处于真空状态,以防 止粉末在球磨过程中氧化,球磨时间20h。

HP 在真空热压炉进行,采用单向压制,压力 45 MPa。热压温度 1 250 ,保压时间 0.5 h。保压结束后炉冷时,为防止热压压坯高温下氧化,将温度降到 200 以下后再关闭真空系统。

试样的化学成分采用 ICPS-8100 型电感耦合等离子发射光谱仪(ICP)测试;相组成和晶格参数用 X 射线衍射法测试;用排水法测量试样密度;在 HV-10 型小型维氏硬度计上测定维氏硬度(载荷 10 N)和断裂韧性(采用维氏硬度压痕法,载荷 100 N)。

维氏硬度 Hv 和断裂韧性的计算使用下列公式:

$$Hv = 1 854.4F/a^2$$
 (1)

$$K_{\rm IC} = 0.02 (E/\text{Hy})^{1/2} (F/l^{3/2})$$
 (2)

式中:F 为载荷,N;a 为压痕两对角线的算术平均值,mm;E 为弹性模量,根据文献[16-17]为 218 MPa;l 为尖角裂纹长度,mm。应用上式计算 K_{IC} ,需满足裂纹l 2a,且裂纹尺寸不超过试样厚度的 1/10。

表 1 Laves 相 NbCr₂ 金属间化合物试样的化学成分

Table 1 Chemical compositions of NbCr₂ Laves-phase compounds

Sample No.	x(Cr)/%
1	68.2
2	67.7
3	67.2
4	66.7
5	66.2

2 结果及讨论

2.1 Laves 相 NbCr₂中的点缺陷结构

5 种成分的 Laves 相 NbCr $_2$ 金属间化合物的 XRD 谱如图 1 所示。从图 1 可以看出,所有试样都为 C15 结构的 NbCr $_2$ Laves 相,与 Nb-Cr 的二元相图^[13]是吻合的。

图 2 所示为根据 XRD 谱计算出的 C15 结构 $NbCr_2$ 的晶格常数。图中实线代表理论值、黑点表示经过计算得到的实验值。当合金成分偏离化学配比成分时,必然会导致合金的晶体规则排列结构存在缺陷。Laves 相 $NbCr_2$ 属于拓扑密堆结构,由于具有拓扑密排结构

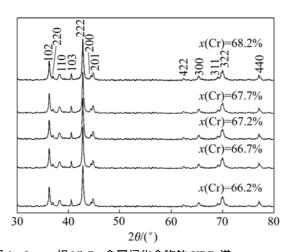


图 1 Laves 相 NbCr₂ 金属间化合物的 XRD 谱 **Fig.1** XRD patterns of NbCr₂ Laves-phase compounds

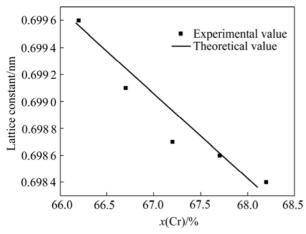


图 2 C15 结构 Laves 相 NbCr₂ 晶格常数与成分的关系 **Fig.2** Relationship between lattice constant and composition of NbCr₂ Laves-phase with C15 structure

的 Laves 相空间填充度很高,过剩的原子不会进入晶胞内的间隙,而只可能要么占据原来的点阵位置从而在另一原子点阵位置上形成结构空位(Constitutional vacancies),要么占据另一原子的点阵位置,形成反位置点缺陷(Anti-site substitution)^[11]。CHEN 等^[18]曾假设Laves 相结构中的缺陷全部为反位置缺陷,则 C15 Laves 相的晶格常数可采用平均原子半径的方法计算。用 a_R 表示 C15 结构的晶格常数,由于单胞中 24 个原子的空间占有率为 71%,有如下等式成立:

$$0.71a_{\rm R}^3 = 24 \times \frac{4}{3}\pi r_{\rm a}^3 \tag{3}$$

式中: r_a 为平均原子半径。根据组成原子 A 和 B 的原子半径和各自的摩尔分数计算得到的,即

$$r_{a}=(1-x)r_{Nb}+xr_{Cr} \tag{4}$$

式中 x 为 Cr 的摩尔分数。对于 $NbCr_2$ r_{Nb} 为 0.145 nm ,

 $r_{\rm Cr}$ 为 0.128 nm , $a_{\rm R}$ =6.405 217-0.001 72 $x_{\rm o}$

式(4)表明,在 NbCr₂ 的 Laves 相固溶度范围内,晶格常数与成分呈线性,且随原子半径较小的 Cr 含量的增加而减小。从图 2 可以看出,C15 结构 Laves 相 NbCr₂ 的晶格常数随着 Cr 含量的增加而减小,这是因为 Nb 原子半径比 Cr 的大,晶格常数与成分的关系和理论计算值的变化基本吻合。因此,在 Laves 相的固溶度范围内,当成分偏离化学计量比时,NbCr₂ 合金中存在反位置缺陷,即成分处于富 Nb 区时,缺陷为 Nb Cr 的反位置缺陷;若成分处于富 Cr 区,则缺陷为 Cr Nb 的反位置缺陷。

为了进一步分析 Laves 相 NbCr2 金属间化合物中 的缺陷结构,采用排水法测量试样的密度。图3所示 为试样密度与 Cr 含量的关系。图中实线为 Laves 相化 合物中引入反位置组分缺陷的化合物理论密度,虚线 为 Laves 相化合物中引入组分空位后化合物的理论密 度。空位型化合物的理论密度随着成分偏离计量比而 迅速减小,而反位置缺陷型化合物的理论密度则随 Cr 含量的增加缓慢减小。虽然实验测定的密度与反位置 缺陷型化合物理论密度的误差小于 3%,但其变化趋 势与反位置型化合物的变化趋势完全一致,而与空位 型化合物的差异显著。因此可以认为,当成分偏离化 学计量比时,NbCr2 中存在着反位置缺陷,不存在组 分空位,变化趋势从图中可以看出随着试样成分偏离 Laves 相 NbCr₂ 的化学配比,试样烧结前后的致密度 增加。因此可以认为,当成分偏离化学计量比时,C15 结构的 NbCr₂Laves 相金属间化合物中存在着反位置 缺陷,不存在组分空位,这与 ZHU 等[11-12]的研究结 果相同。孙学松等[19]在研究 Laves 相 ZrCr2 合金的结 构缺陷时也得到相似的结论。

由于 AB₂型 Laves 相金属间化合物属于拓扑密排结构,在 3 种晶体结构中,每种晶体结构具有相同的基本堆垛单元。但与一般 FCC 和 HCP 结构不同的是,Laves 相的基本堆垛单元不是单层原子面,而是由四层原子面组成。其中,大原子 A 和小原子 B 各占两层原子面。C15 基本单元的堆垛顺序类似于通常的立方FCC 结构,即沿[111]方向按…ABCABC…的顺序堆垛,C14 的堆垛顺行类似于通常的 HCP 结构,沿[0001]方向按…ABABABAC…的顺序堆垛排列。图 4 所示为 C15 结构 Laves 相晶胞结构图。大小原子分别代表 A 原子(Nb)和 B 原子(Cr)。例如 2A2B 点阵由 2、4、7 和 8 原子组成;1A3B 点阵由 1、6、8 和 9 原子组;4B 点阵由6、7、8 和 9 原子组成。在 Laves 相 NbCr₂ 金属间化合物中,当成分为富 Cr 时,多余 Cr 原子占据 Nb 位

置;当成分为富 Nb 时,多余半径大的原子 Nb 占据半径小的原子 Cr 的位置。显然,这必定会引起晶格畸变。在 Nb-Cr 二元相图 $^{[13]}$ 上, Cr 在 NbCr $_2$ Laves 相中的溶解度比 Nb 的溶解度大,这也印证上述结构的特征。

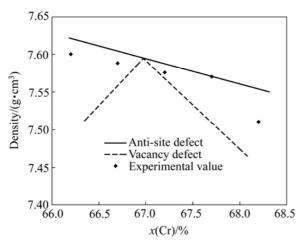


图 3 Laves 相 NbCr₂合金密度与成分的关系

Fig.3 Relationship between density and composition of NbCr₂ Laves-phase alloys

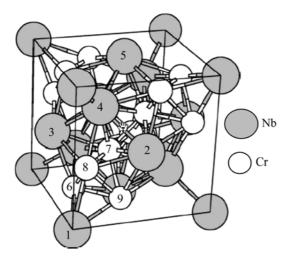


图 4 C15 结构 Laves 相晶胞结构图

Fig.4 Crystal cell structure diagram of Laves-phase with C15 structure

2.2 缺陷结构对 Laves 相 NbCr₂ 力学性能的影响

利用显微硬度仪研究 Laves 相 $NbCr_2$ 化合物试样的显微硬度和断裂韧性等力学性能,其结果如图 5 所示。图 5(b) 中虚线处为化学计量比成分。从图 5 可以看出,合金硬度随着成分偏离化学计量比而逐渐减小,硬度在化学计量比 66.7% Cr 处取得最大值。

断裂韧性通过维氏硬度压痕诱发的裂纹长度来研究,其典型的压痕及其诱发的裂纹扫描电镜照片如图6所示。从图5(b)可以看出,当NbCr2的成分为66.7%Cr

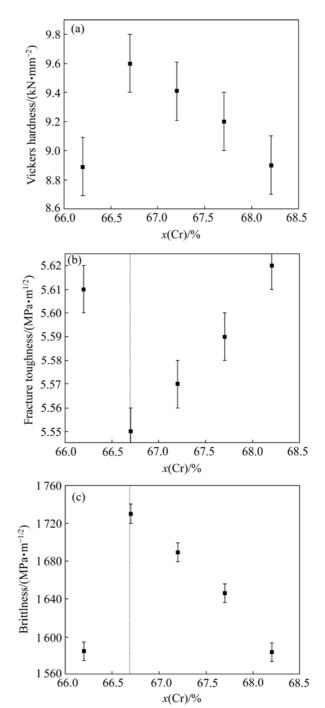


图 5 NbCr₂ 合金的力学性能与成分的关系

Fig.5 Relationship between mechanical properties and composition of $NbCr_2$ alloys

时,合金的断裂韧性最小,随着成分偏离化学配比,断裂韧性有所提高。所有试样都具有较好的断裂韧性,远大于熔铸工艺制备的 Laves 相 $\mathrm{NbCr_2}$ 的断裂韧性 1.5 MPa· $\mathrm{m}^{1/2[20]}$ 。 脆性度(Brittleness)被定义为显微硬度与断裂韧性之比,即 $\mathrm{Hv}/K_{\mathrm{IC}}$ 。图 $5(\mathrm{c})$ 表明,合金的脆性度随着偏离化学配比而逐渐减小。 CHEN 等 $^{[21]}$ 用这种方法测量过 Laves 相 $\mathrm{TiCr_2}$ 金属间化合物的硬度,发现

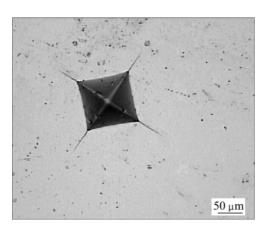


图 6 Laves 相 NbCr₂ 合金典型压痕及诱发裂纹的 SEM 像 **Fig.6** SEM image of typical indentation of NbCr₂ Lavesphase alloys

在化学计量比处取得最大值,随着偏离化学计量比而逐渐减小,这与本研究的结果相似,这也为本文作者认为的 $NbCr_2$ 在化学计量比处的硬度出现最大值和断裂韧性出现最小值提供佐证。也就是说结构缺陷的存在使得 Laves 相铬化物出现了所谓的"软化效应"(Softening effect)^[6],在 $ZrCr_2$ 中也有类似的现象^[6,19]。

本文作者的最新研究结果[22]称这种现象为"韧化 效应"(Toughening effect)。由于 Laves 相的特点之一 就是化合物的拓扑密排结构而产生的高强度,即使在 高温下 ,如 1 200 时 Laves 相 Cr-8.0Ta-5.0Mo-0.5Ti-0.01Ce 的铸态和热挤压状态合金的屈服强度仍分别为 476 和 259 MPa, 伸长率分别达到 5.3%和 39%, 而大 多数镍基高温合金在此温度下强度已消失[6],这种性 能是其它金属间化合物(如 NiAl、FeAl、TiAl 等)难以 具有的。由于 $r_{Nb}/r_{Cr}=1.14$, 与形成 Laves 相的理想原 子半径比(1.225)存在差异,为了形成更规则的 Laves 相结构,就要求 $r_{\rm A}/r_{\rm B}$ 的实际比例更接近于 1.225,这 样原子半径比偏离 1.225 的合金中则存在一种原子被 压缩而另一种原子膨胀的现象[8],这将产生一个弹性 应变能,它将降低化合物总的结合能。结构缺陷的出 现使拓扑密排结构的 Laves 相化合物的弹性应变能释 放并使某些高度密排结构松弛,位错运动阻力减轻, 故此产生韧化效果,这为 Laves 相的脆性改善提供一 条思路。总之,缺陷的存在对 Laves 相 NbCr2合金的 增韧有一定的效果。

3 结 论

1) 采用机械合金化(球磨时间为 20 h, 球料质量

比为 13:1)和真空热压(温度为 $1\ 250$, 热压时间为 $0.5\ h$)的粉末冶金工艺能够有效地制备 Laves 相 $NbCr_2$ 化合物。

- 2) 在 Laves 相固溶度范围内(即 Cr 含量为 61%~69%),当 NbCr₂成分偏离化学计量比 33.3%Nb~66.7%Cr 时,合金中存在反位置(组分)缺陷。
- 3) 在 Laves 相固溶度范围内, $NbCr_2$ 金属间化合物的显微硬度在化学计量处取得最大值 9.41 kN/mm^2 ,断裂韧性在化学计量比处最小为 5.55 $MPa\cdot m^{1/2}$;随其成分偏离化学计量比, $NbCr_2$ 脆性度逐渐降低,缺陷的存在对 $NbCr_2$ 具有韧化作用。

REFERENCES

- JIANG Chao. Site preference of early transition metal elements in C15 NbCr₂[J]. Acta Materialia, 2007, 55(5): 1599–1605.
- [2] 聂小武,鲁世强,王克鲁,郑海忠,肖 璇. Laves 相铬化物的 高温抗氧化性能研究进展[J]. 金属热处理,2006,31(9):31-34.
 - NIE Xiao-wu, LU Shi-qiang, WANG Ke-lu, ZHENG Hai-zhong, XIAO Xuan. Research progress in high temperature oxidation-resistance properties of Laves phase chrominide compounds[J]. Heat Treatment of Metals, 2006, 31(9): 31–34.
- [3] YAO Q, SUN J, LIN D, LIU S, JIANG B. First-principles studies of defects, mechanical properties and electronic structure of Cr-based Laves phases[J]. Intermetallics, 2007, 15(5/6): 694–699.
- [4] KAZANTZIS A V, AINDOW M, JONES I P, de TRIANTANTAFYLLIDIS G K M, HOSSON J T H. The mechanical properties and the deformation microstructures of the C15 Laves phase Cr₂Nb at high temperatures[J]. Acta Materialia, 2007, 55(6): 1873–1884.
- [5] 聂小武,鲁世强,王克鲁,郑海忠,苏 倩. Laves 相铬化物的制备研究进展[J]. 铸造技术, 2006, 27(7): 756-759.

 NIE Xiao-wu, LU Shi-qiang, WANG Ke-lu, ZHENG Hai-zhong, SU Qian. Development on preparing investigation of Laves phase chrominide compounds[J]. Foundry Technology, 2006, 27(7): 756-759.
- [6] KELLOU A, GROSDIDIER T, CODDET T, AOURAG H. Theoretical study of structural, electronic, and thermal properties of Cr₂(Zr, Nb) Laves alloys[J]. Acta Materialia, 2005, 53(5): 1459–1466.
- [7] 鲁世强,黄伯云,贺跃辉,何双珍,邓意达. Laves 相合金的力学性能[J]. 材料工程, 2003(5): 43-47.

 LU Shi-qiang, HUANG Bai-yun, HE Yue-hui, HE Shuang-zhen,
 DENG Yi-da. Mechanical properties of Laves phase alloys[J].

 Materials Engineering, 2003(5): 43-47.
- [8] 聂小武,鲁世强,王克鲁. 机械合金化 Nb-Cr 粉末的热力学分

- 析[J]. 特种铸造及有色合金, 2007, 27(6): 477-479.

 NIE Xiao-wu, LU Shi-qiang, WANG Ke-lu. Thermo-kinetic analysis of mechanical alloying Nb-Cr powders[J]. Special Casting and Nonferrous Alloys, 2007, 27(6): 477-479.
- [9] YAO Q, SUN J, ZHANG Y, JIANG B. First-principles studies of ternary site occupancy in the C15 NbCr₂ Laves phase[J]. Acta Materialia, 2006, 54(13): 3585–3591.
- [10] BEWLAY B P, SUTLIFF J A, JACKSON M R. Microstructural and crystallographic relationships in directionally solidified Nb-Cr₂Nb eutectics[J]. Acta Metall Mater, 1994, 42(8): 2869–2878.
- [11] ZHU J H, PIKE L M, LIU C T. Point defects in binary NbCr₂ Laves-phase alloys[J]. Scripta Materialia, 1998, 39(7): 833–838.
- [12] ZHU J H, PIKE L M, LIU C T. Point defects in binary Laves phase alloys[J]. Acta Materialia, 1999, 47(7): 2003–2018.
- [13] THOMA D J, PEREPEZKO J H. An experimental evaluation of the relationships and solubilities in the Nb-Cr system[J]. Mater Sci Eng A, 1992, 156(1): 97–108.
- [14] NIE Xiao-wu, LU Shi-qiang, WANG Ke-lu. Phase transformations of $NbCr_2$ intermetallics produced by mechanical alloying followed by hot-pressing consolidation[J]. Materials Characterization, 2008, 59(6): 816–819.
- [15] NIE Xiao-wu, LU Shi-qiang, WANG Ke-lu. Effect of mechanical alloying on the structure and properties of NbCr₂ fabricated by hot pressing[J]. Powder Technology, 2008, 184(3): 333–336
- [16] THMOMA D J, NIBUR K A, CHEN K C. The effect of alloying

- on the properties of (Nb, Ti)Cr₂ C15 Laves phases[J]. Mater Sci Eng A, 2002, 329/331: 408–415.
- [17] KIM W Y, YEO I D, KIM M S, TAKASUGI T. Phase relation and room temperature mechanical property of Cr₂Zr based Laves phase[J]. Materials Science Forum, 2004, 449/452: 805–809.
- [18] CHEN K C, PETERSON E J, THOMA D J. HfCo₂ Laves phase intermetallics (part 1): Solubility limits and defect mechanisms[J]. Intermetallics, 2001, 9(9): 771–783.
- [19] 孙学松, 孙 峰, 孙 坚. ZrCr₂ Laves 相金属间化合物缺陷结构及缺陷软化效应[J]. 中国有色金属学报, 2005, 15(4): 624-630.
 - SUN Xue-song, SUN Feng, SUN Jian. Defect structure and its softening effect in ZrCr₂ Laves-phase compound[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(4): 624–630.
- [20] DAVIDSON D L, CHAN K S, ANTON D L. The effects on fracture toughness of ductile-phase composition and morphology in Nb-Cr-Ti and Nb-Si in-situ composites[J]. Metallurgical and Materials Transactions A, 1996, 27(10): 3007–3018.
- [21] CHEN K C, ALLEN S M, LIVINGGSTON J D. Factors affecting the room-temperature mechanical properties of $TiCr_2$ -based Laves phase alloys[J]. Mater Sci Eng A, 1998, 242(1/2): 162-173.
- [22] NIE Xiao-wu, LU Shi-qiang, WANG Ke-lu, CHEN Tong-cai, NIU Chun-lin. Fabrication and toughening of NbCr₂ matrix composites alloyed with Ni obtained by powder metallurgy[J]. Mater Sci Eng A, 2009, 502(1/2): 85–90.

(编辑 李艳红)