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Comparison of simulation of single-crystalline and polycrystalline
Mo nanowires under uniaxial tensile strain

LI Xiao-fan', HU Wang-yu', XIAO Shi-fang', DENG Hui-qiu’

(1. School of Physics and Microelectronics Science, Hunan University, Changsha 410082, China)

Abstract: Using molecular dynamic simulations, the difference of tensile deformation behavior between the
polycrystalline Mo nanowires and single-crystalline counterparts was investigated. The results show that, compared with
the polycrystalline nanowires, the single-crystalline nanowires have higher elastic modulus, yield strength and fracture
strain, and more local atomic structural evolutions and amorphization exist during tensile strain, which results in the
superplasticity behaviors of single-crystalline nanowires. For the polycrystalline nanowires, the necking commences from
the grain boundary regions of high stress concentration, and the local atomic structural transitions happen only near these
regions. Thus, the degree of structure order is rarely affected with increasing strain. The high stresses found in the grain
boundary regions of polycrystalline nanowires clearly play a dominant role in controlling both inelastic deformation and
fracture processes in the nanoscale objects. The observed atomic configuration transformation is a stress-induced
mechanism accounting for plastic deformation.
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Fig.2 Stress—strain curves of single-crystalline Mo nanowire and corresponding structures of atom at different strains
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Fig.3 Structures of atom of polycrystalline Mo nanowire at different strains: (a) e=0; (b) e=20%; (c) £=50%; (d) £&=60%; (e) e=68%
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