

铜包铝复合棒材平辊轧制宽展变形行为

罗奕兵, 刘新华, 谢建新

(北京科技大学 新材料技术研究院, 北京 100083)

摘要: 对铜包铝复合棒材平辊冷轧时的金属流动进行数值模拟和实验研究。结果表明: 由圆断面至扁断面的第一道次平辊轧制中侧边以变形宽展为主; 在后续道次的平辊轧制过程中, 滑动宽展的影响增大, 侧边变形宽展的影响减小; 当压下率为 13.3%~26.7% 时, 摩擦因数对铜包铝棒材宽展率的影响较小, 而当压下率大于 33.3% 时, 摩擦因数对宽展的影响增大; 铜包铝复合棒材的最大轧制压力在轧制入口端, 断面上存在一条“X”状的等效应变带。实验结果与有限元分析结果具有良好的一致性。采用合适的轧制工艺, 可获得铜包覆层分布均匀、铜铝复合界面无裂纹和分层、表面质量好的扁排。

关键词: 铜包铝复合棒; 有限元分析; 平辊轧制; 宽展

中图分类号: TG 335 文献标识码: A

Lateral spreading deformation behavior in flat rolling of copper cladding aluminum composite rods

LUO Yi-bing, LIU Xin-hua, XIE Jian-xin

(Advanced Materials and Technology Institute, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: Combining finite element simulation with experiments, the metal flow behavior in cold flat rolling of copper cladding aluminum(CCA) composite rod was investigated. The results show that sidepiece deformation spreading is dominant in the first flat rolling pass. However, in the later passes, the influence of slip spreading enhances while the influence of sidepiece deformation spreading reduces. When the rolling reduction ratio is in the range of 13.3%~26.7%, the influence of friction factor on lateral spreading rate is small, but when the ratio is larger than 36.7%, the influence increases. The maximum pressure lies at the entry of rod rolling. There is an “X” like equivalent strain zone in the section. Reasonable agreement of the FEM analysis and the experimental results is obtained. CCA flat bar that has clean surface quality and uniform thickness of copper cladding layer, without crack and layer at the composite interface, can be prepared by property rolling process.

Key words: copper cladding aluminum composite rod; finite element analysis; flat rolling; spreading

铜包铝导电扁排是一种新型金属复合异形截面导体, 具有导电性能好、密度低、价格便宜等^[1~3]优点, 可广泛用于建筑配电母线槽、高中频加热设备、化工冶金领域的大型汇流排等。但目前工业上成熟的铜包铝生产方法^[4~7], 如挤压、拉拔、包覆焊接法和轧制压接法等, 均难以制备断面尺寸较大、铜包覆层厚度为毫米级, 且界面达到完全冶金结合的高性能铜包铝复

合材料。谢建新等^[8~10]开发了一种充芯连铸复合方法, 实现了大断面、高界面质量的铜包铝复合棒坯的连续铸造, 可为制备铜包铝复合导电排提供高质量坯料。

平辊轧制法具有适应性强、生产效率高、能耗少、成本低等优点, 是制备单一材质扁平断面材料的主要生产方法。迄今为止, 关于单一材质圆线平辊轧制的宽展变形行为的研究报道较多^[11~14]主要集中于碳和

铜等。如 KAZEMINEZHAD 等^[13-14]利用有限元法分析了碳钢圆丝平辊轧制时变形区金属流动行为, 探讨了压扁钢丝的应力场、应变场分布特点; CARLSSON^[11]考虑了第一道次平辊轧制的压力分布和金属流动规律。但对后续轧制道次及包覆材料的研究较少。本文作者采用数值模拟与实验相结合的方法, 对铜包铝复合棒材在平辊轧制过程中金属流动和宽展变形行为进行研究, 为铜包铝导电扁排的轧制成形控制提供指导。

1 有限元模拟分析

1.1 模型建立

图 1 所示为采用铜包铝复合棒材平辊轧制成形导电母排(以下简称扁排)的断面形状变化示意图。本文中采用压下率 ε_h 作为铜包铝棒材平辊轧制的变形量参数:

$$\varepsilon_h = \frac{h_0 - h_1}{h_0} = \frac{\Delta h}{h_0} \times 100\% \quad (1)$$

式中: h_0 为轧前坯料厚度; h_1 为轧后坯料厚度; Δh 为道次压下量。

由圆断面到扁断面的第一道次轧制时的宽展主要由两部分组成, 即与轧辊接触金属在宽度方向形成的滑动宽展, 以及棒坯侧部自由变形金属因受压缩变形作用而向宽度方向移动形成的侧边自由变形宽展。宽展率 Δb 、滑动宽展率 Δb_h 及侧边变形宽展 δb_b 的定义如下:

$$\Delta b = \frac{b_1 - b_0}{b_0} \times 100\% \quad (2)$$

$$\Delta b_h = \frac{b_2 - b_3}{b_3} \times 100\% \quad (3)$$

$$\delta b_b = (b_1 - b_2) - (b_0 - b_3) \quad (4)$$

$$b_0 = h_0 = d \quad (5)$$

式中: b_1 为轧后坯料宽度; b_0 为轧前坯料宽度; b_2 为轧后坯料的宽面宽度; b_3 为轧后坯料宽面金属所对应轧前棒坯断面金属的弦长; d 为坯料直径。

为与实验进行比较, 本文中选取外径 30 mm、长度 120 mm 的铜包铝复合棒材为计算对象, 其中断面铜层厚度为 3 mm。轧辊假定为刚性辊, 轧辊直径为 d300 mm, 轧制速度为 0.3 m/s。

由图 1 可知, 轧制变形坯料在宽度和厚度方向具有对称性, 因此在有限元计算中取 1/4 圆柱体(如图 2 所示)为计算对象, 模拟中假定铜层和铝芯直接接触,

且铜层和铝芯在变形过程中的界面条件为完全结合状态, 不发生分离现象; 假定铜与轧辊的接触面之间为库仑摩擦, 摩擦因数范围为 0.05~0.3。模型网格选取为四面体, 网格总数为 64 000, 坯料的网格划分如图 2 所示。

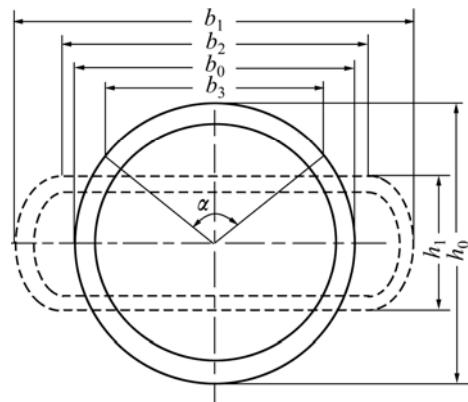


图 1 由圆断面到扁平断面平辊轧制断面形状变化示意图

Fig.1 Schematic of shape change from round to flat section

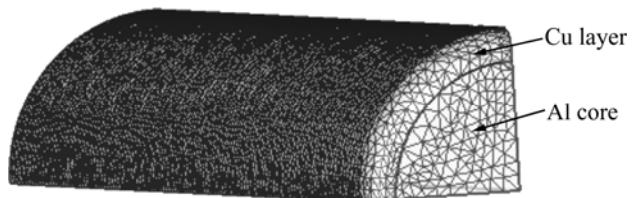


图 2 1/4 棒材模型网格划分

Fig.2 Schematic FE mesh for 1/4 part of rod section

铜、铝材料选用 T2 纯铜和 1060 纯铝, 铜和铝的钢塑性本构关系方程^[15]分别采用 $\sigma=245.3+14.72\varepsilon^{0.58}$ 和 $\sigma=93.2+0.98\varepsilon$ 。

1.2 结果及分析

1.2.1 金属流动

在由圆断面到扁平断面的第一道次轧制中, 变形区内金属的宽度方向速度分布如图 3 所示。从图 3(a)可以看出, 坯料与轧辊表面接触区的边界线与速度等值线基本一致, 这说明变形区边缘的金属在宽度方向的流动速度基本相同, 其值也较小; 越靠近水平对称面中部的侧面铜层宽度方向速度越大, 如图 3(a)中 E、F 线所示。变形区横断面上的宽度方向的速度分布如图 3(b)所示。在变形区中部存在着一个明显的“V”形的难变形区(图中 B 线所示), 宽度方向速度最大区域位于水平对称面附近轧件侧边部(自由变形区), 如图 3(b)中 F 线所示。由此可知, 侧部金属的变形宽展在第一道次轧制宽展中占主导作用。

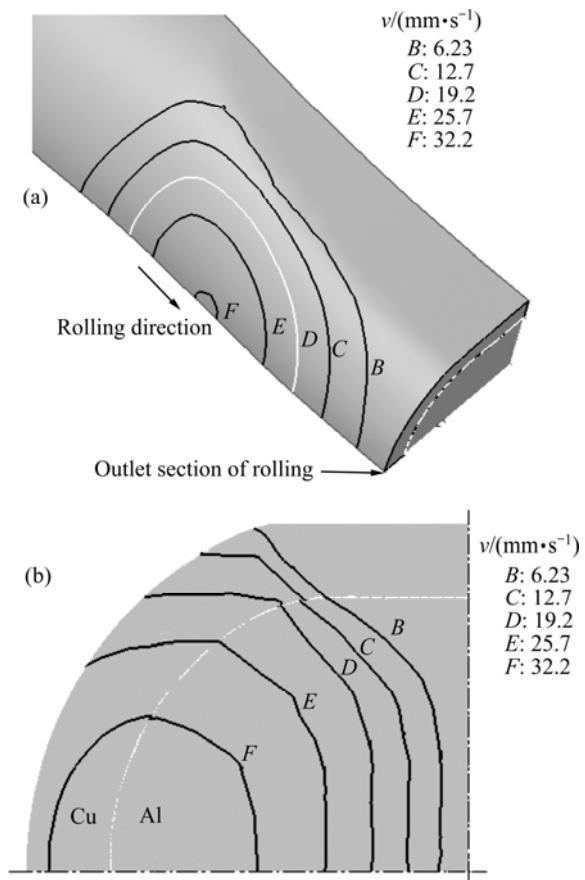


图 3 第一道次轧制变形区金属宽度方向的速度分布 ($\varepsilon_{h1}=40\%$)

Fig.3 Transversal flow velocity distribution in deformation zone during first pass rolling: (a) On surface of deformation zone; (b) In cross-section of deformation zone

第二道次轧制变形区金属宽度方向的速度分布如图 4 所示。从图 4 可以看出, 与第一道次轧制, 与轧辊接触的表面金属在宽度方向的速度增大, 与轧辊接触的中部金属速度相对较大, 如图 4(a) 中 C 线所示。从横断面上的速度分布可以看出, 速度较高区域(图 4(b) 中 F 线)的体积比图 3(b) 中的明显减小, 且该部分区域直接受轧辊压下的作用。经第一道次轧制后的扁形断面铜包铝复合材料在后续平辊轧制中, 滑动宽展增强, 侧边变形宽展的作用减弱。

同一轴向位置上坯料的表面铜层质点的流动轨迹在横断面上的投影如图 5 所示。针对图 5 中所标记的坯料 1/4 圆周上 19 个等角度间隔的金属质点, 通过软件后处理中点追踪功能提取各质点在每个时刻的坐标, 绘出各点运动轨迹投影及轧后断面形状。从图 5 中可以看出, 金属流动具有如下两方面的特点。

1) 在第一道次轧制变形过程中, 质点轨迹投影可以分为比较明显的 3 种流动方式, 即与轧辊最先接触

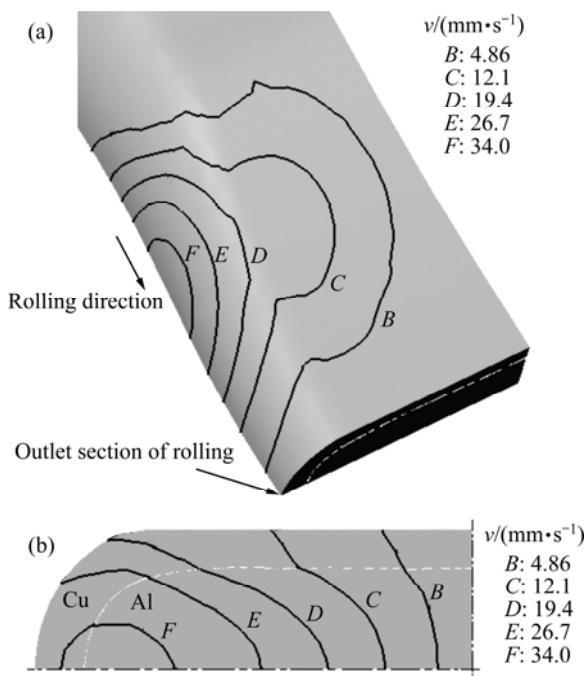


图 4 第二道次轧制变形区宽度方向的速度分布 ($\varepsilon_{h2}=33\%$)

Fig.4 Transversal flow velocity distribution in deformation zone during second pass rolling: (a) On surface of deformation zone; (b) In cross-section of deformation zone

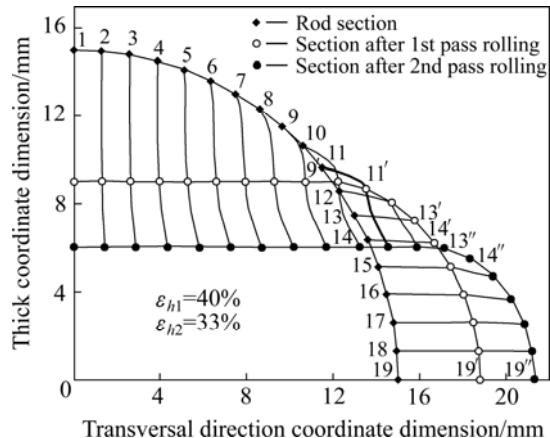


图 5 铜层表面质点金属流动轨迹在横断面的投影

Fig.5 Section profile and projection of superficial copper point flow loci

的部分质点(如图中点 1~5)受轧辊摩擦的作用较大, 主要产生压下方向的位移, 在宽度方向的位移很小; 水平对称面附近的质点(如图中 15~19 点)未直接受轧辊直接压下的作用, 在压下方向的位移很小, 以水平流动(宽展)为主; 其余质点 6~14, 则逐渐由压下方向位移为主转变为水平方向位移为主。

2) 第一道次轧制的宽展以侧边自由变形宽展为主。位于与轧辊表面接触区的质点 1~9 的宽向位移较

小, 最大值(质点 9)小于 1 mm; 而位于自由变形区的质点 11~19 的宽度方向位移均较显著, 最大值(质点 19)达到 3.8 mm。计算表明, 第一道次轧制的侧边自由变形宽展为 2.18 mm, 占该道次总宽展的 57.4%。

1.2.2 应力、应变分析

当轧辊直径 $D=300$ mm, 轧制速度为 $v=0.3$ m/s, 摩擦因数 $f=0.25$, 压下率为 $\varepsilon_{h1}=33.3\%$ 时, 轧制变形区金属压下方向的应力分布如图 6 所示。从图 6 可以看出, 铜包铝复合棒材平辊轧制时, 最大轧制压力不在与轧辊表面接触的中心, 而在接触区的入口处, 呈马蹄状。这是平辊轧制时坯料与轧辊表面接触宽度不同所致, 与轧辊表面接触金属形状大致成椭圆形。坯料头部首先进入接触区, 与轧辊接触宽度小, 当这部分材料开始变形时, 与之相邻的侧边部金属仍在弹性变形范围内, 会抵抗变形。在这种抵抗行为的作用下, 名义压力得以建立^[16], 导致轧制咬入端的压力显著增加。当坯料进入变形区中部后, 与轧辊表面接触金属的宽度显著增大, 与之相邻的侧边部金属弹性抵抗作用降低, 轧制压力减小。

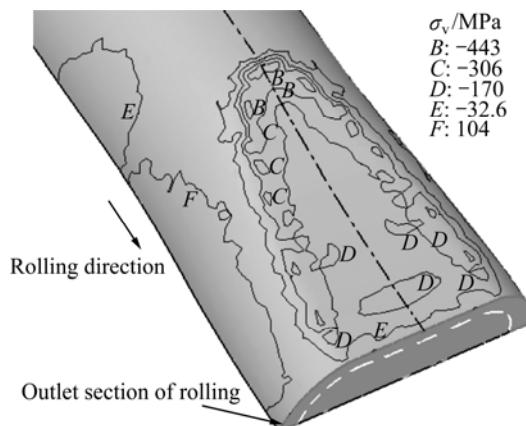


图 6 轧制变形区压下方向的应力分布

Fig.6 Stress distribution in deformation zone along depressing direction

当轧辊直径 $D=300$ mm, 轧制速度 $v=0.3$ m/s, 压下率 $\varepsilon_{h1}=33.3\%$, 摩擦因数 $f=0.25$ 时, 变形区断面等效应变分布如图 7 所示。从图 7 可以看出, 铜包铝棒材平辊轧制时, 最大的等效应变区域位于芯层中部, 而最小的等效应变处在侧部自由变形区边缘, 铜包覆层的最大应变区域位于与轧辊表面接触的外侧。由于平辊轧制时变形和金属流动的不均匀性, 横截面上等效应变场呈现一条明显呈“X”状的等效应变带(如图中 C 所示)。应变带的存在是由于在平辊轧制变形时, 坯料不同部位发生塑性变形程度不同及金属流动的不均匀性造成的。从图 7 中还可以看出, 在复合界面处,

等效应变存在着不连续性, 这是由于包覆层和芯层材料组元的塑性变形性能差异较大, 两层组元之间的协调变形, 在复合界面处应变产生不连续现象。

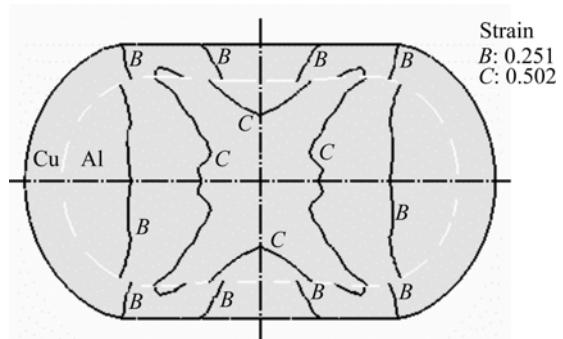


图 7 轧制变形区断面的等效应变分布

Fig.7 Equivalent strain distribution in deformation zone section

1.2.3 摩擦对宽展的影响

图 8 所示为宽展率与摩擦因数的关系。从图 8 可以看出, 当压下率为 13.3%~26.7% 时, 摩擦因数对铜包铝棒材轧制宽展率影响较小; 当压下率为 33.3% 时, 宽展率随摩擦因数的增大而增大, 但宽展率的增加逐渐趋于平缓。

摩擦因数对宽展的影响主要是通过改变轧制变形区内轧制方向和宽度方向的金属流动阻力的相对大小而发挥作用。当压下率较小时, 轧制变形区长度较小, 摩擦因数的增加对轧向流动阻力的影响很小, 因而宽展率几乎不随摩擦因数的变化而变化; 而当压下率较大时, 轧制变形区长度较大, 摩擦因数的增加将导致轧向金属流动阻力增加, 从而有利于金属的宽向流动, 宽展率增加。

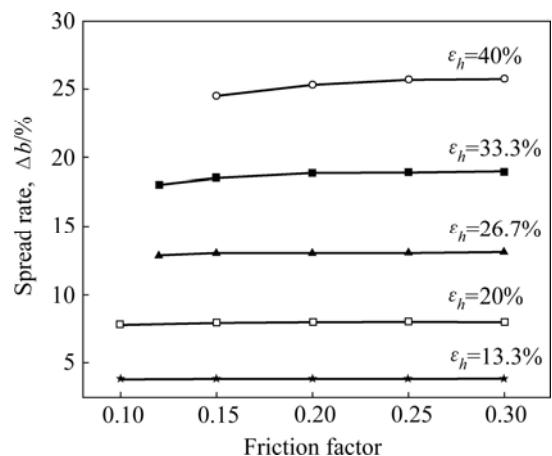


图 8 宽展率与摩擦因数的关系

Fig.8 Relationship between spreading rate and friction factor

2 实验及结果分析

本节采用网格分析方法重点研究第一道次轧制变形中压下率对滑动宽展与侧面自由变形宽展的影响。

2.1 实验方法

轧制试样采用水平连铸直接复合铜包铝棒材，棒材直径为 29.5 mm，铜层厚度为 3 mm。在试样一端表面划分网格，网格的轴向间距为 4 mm，在圆周上的圆心角间距为 15°，如图 9(a)所示。轧制实验参数为：轧辊直径 300 mm，轧制速度 0.3 m/s，采用无润滑轧制。

宽展的计算以图 9(b)中轧后坯料为例，测得轧后坯料宽度 b_1 和宽面宽度 b_2 分别为 33.6 mm 和 18.5 mm。对轧后坯料宽面宽度进行测量和计算，其扁排宽面金属所对应棒坯圆周断面金属的圆心角 α 为 75°，其所对应的圆周断面的弦长 b_3 为 17.9 mm，再据此求得宽面金属的滑动宽展率 Δb_h 和侧边变形宽展 δb_b 。

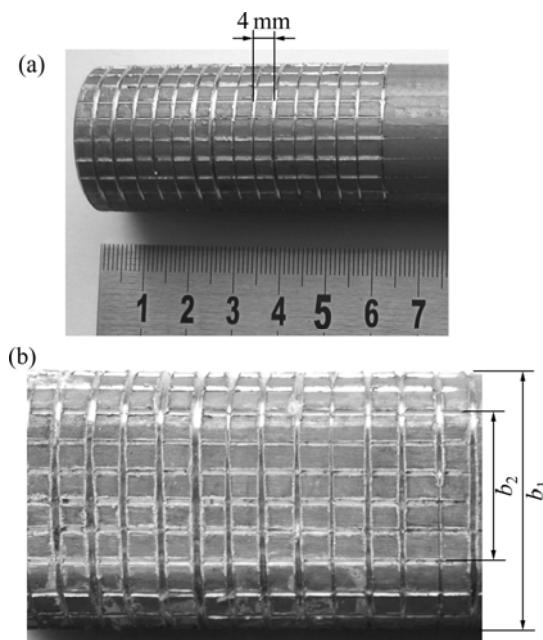


图 9 轧前、轧后坯料的表面网格

Fig.9 CCA samples with surface grids: (a) Billet before rolling; (b) After flat rolling ($\varepsilon_h=29.5\%$)

2.2 结果与分析

铜包铝棒坯在由圆断面到扁形断面的第一道次平辊轧制中，压下率对宽面滑动宽展率的影响如图 10 所示。从图 10 可以看出，随着压下率的增大，宽面滑动宽展率增大。压下率增大，轧制变形区长度增加，

轧向金属流动阻力增大，宽面滑动宽展率增大。

压下率对侧边自由变形宽展与总宽展之比的影响如图 11 所示。从图 11 可以看出，压下率为 29.5%~49.8% 时，在宽展变形中侧边自由变形宽展占主要部分，当压下率为 39.6%，侧边自由变形宽展与总宽展之比为 61.9%，这与压下率为 40%，侧边自由变形宽展与总宽展之比为 57.4% 的有限元计算结果具有较好的一致性。随着压下率的增大，侧边自由变形宽展影响相对减小。这是因为压下率增大宽面滑动宽展增大；而另一方面，当压下率增大，轧后扁排的厚度减小，侧边自由变形区体积变小，因而侧边自由变形的宽展减小。

在总压下率为 67% 时，采用三道次轧制(道次压下率约为 30%)的扁排宽展率为 35.6%，铜层平均厚度为 1.95 mm，铜包覆层最大值与最小值之差为 0.3 mm，断面尺寸为 40 mm × 10 mm 的铜包铝扁排表面及断面形貌如图 12 所示。从图 12 可以看出，采用合适的轧

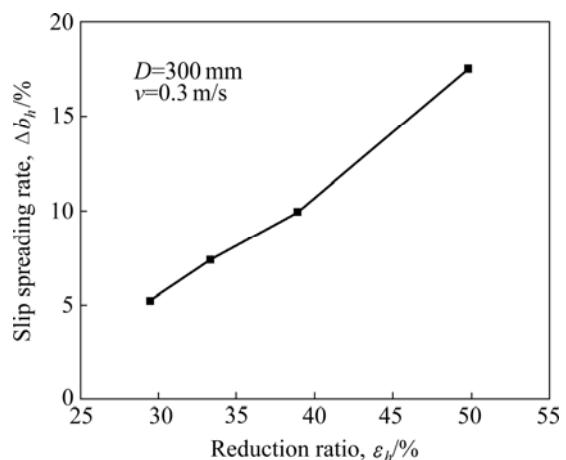


图 10 压下率和滑动宽展率的关系

Fig.10 Effect of reduction ratio on contact surface slip spreading rate

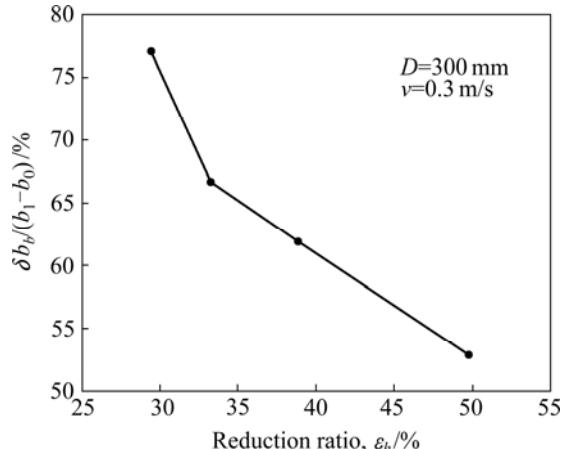


图 11 压下率对侧边变形宽展与总宽展之比的影响

Fig.11 Effect of reduction ratio on rate of sidepiece free deformation spreading and total spreading

图 12 铜包铝扁排表面及断面形貌

Fig.12 Surface and sectional pattern of CCA flat bar

制工艺, 可获得铜包覆层分布均匀、铜铝复合界面无裂纹和分层、侧表面无破裂和宽面光洁的扁排。

3 结论

1) 模拟和实验结果表明, 在由圆至扁平断面的平辊轧制中, 自由变形区体积的逐渐减少, 致使滑动宽展的影响增大, 侧边自由变形的宽展影响减小。有限元分析结果与实验结果具有较好的一致性。

2) 模拟结果表明, 当压下率为 13.3%~26.7% 时, 摩擦因数对铜包铝棒材的相对宽展影响较小; 而当压下率大于 33.3% 时, 宽展随摩擦因数的增大而增大。

3) 模拟结果表明, 变形区断面存在一条“X”状的等效应变带, 复合界面处产生应变不连续现象。

4) 采用合适的轧制工艺, 可获得铜包覆层分布均匀、铜铝复合界面无裂纹和分层、宽面光洁的扁排。

REFERENCES

[1] PERRARD W. Strategies for optimizing cable design and performance through the use of bimetallic wire[J]. *Wire Journal International*, 2001, 34(7): 154~159.

[2] 谢建新, 刘新华, 刘雪峰, 罗奕兵. 一种高性能铜包铝矩形横断面复合导电母排及其制备工艺: 中国, 200810057668.4[P]. 2008-02-04.

[3] 吴运忠. 制造铜包铝排的生产方法: 中国, 200710011271.7[P]. 2007-05-09.

[4] KANG C G, JUNG Y J, KWON H C. Finite element simulation of die design for hot extrusion process of Al/Cu clad composite and its experimental investigation[J]. *International Journal of Mechanical Sciences*, 2002, 42(1/2): 49~56.

[5] AVITZUR B, WU R, TALBERT S, CHOU Y T. Criterion for the prevention of sleeve fracture during extrusion of bimetal rods[J]. *Journal of Engineering for Industry, Transactions of the ASME*, 1986, 108(3): 205~212.

[6] 吴云忠, 马永庆, 张洋, 刘世永. 铜包铝线材室温拉变形后的显微组织和力学性能[J]. *中国有色金属学报*, 2006, 16(12): 2066~2070.

[7] WU Yun-zhong, MA Yong-qing, ZHANG Yang, LIU Shi-yong. Microstructure and mechanical properties of copper clad aluminum wire by drawing at room temperature[J]. *The Chinese Journal of Nonferrous Metals*, 2006, 16(12): 2066~2070.

[8] PAUL A. Method of metal cladding: United States, US3408727[P]. 1968-11-05.

[9] 谢建新, 吴春京, 周成, 王自东. 一种包复材料一次铸造连铸成形设备与工艺: 中国, ZL01109076.6[P]. 2003-09-03.

[10] XIE Jian-xin, WU Chun-jing, ZHOU Cheng, WANG Zi-dong. Continuous direct composite cast forming equipment and technology of a cladding materials: China, ZL01109076.6[P]. 2003-09-03.

[11] 谢建新, 刘新华, 刘雪峰, 苏亚军. 一种包复材料水平连铸直接复合成形设备与工艺: 中国, ZL200610112817.3[P]. 2008-04-02.

[12] XIE Jian-xin, LIU Xin-hua, LIU Xue-feng, SU Ya-jun. Horizontal continuous direct composite cast forming equipment and technology of a cladding materials: China, ZL200610112817.3[P]. 2008-04-02.

[13] CARLSSON B. The contact pressure distribution in flat rolling of wire[J]. *Journal of Materials Processing Technology*, 1998, 73(1/3): 1~6.

[14] VALLELLANO C, CABANILLAS P A, GARCÍA-LOMAS F J. Analysis of deformations and stresses in flat rolling of wire[J]. *Journal of Materials Processing Technology*, 2008, 195(1/3): 63~71.

[15] KAZEMINEZHAD M, KARIMI TAHERI A. An experimental investigation on the deformation behavior during wire flat rolling process[J]. *Journal of Materials Processing Technology*, 2005, 160(3): 313~320.

[16] KAZEMINEZHAD M, KARIMI TAHERI A. A theoretical and experimental investigation on wire flat rolling process using deformation pattern[J]. *Materials & Design*, 2005, 26(2): 99~103.

[17] 赵志业. 金属塑性加工力学[M]. 北京: 冶金工业出版社, 1987.

[18] ZHAO Zhi-ye. Metal plastic working mechanics[M]. Beijing: Metallurgical Industry Press, 1987.

[19] CARLSSON B. The contact pressure distribution in flat rolling of wire[J]. *Journal of Materials Processing Technology*, 1998, 73(1/3): 1~6.

(编辑 李向群)