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Table 1 Factors and levels of

orthogonal tests

A B Cc D
Level
r¢/ mm ro/mm  Type of lubricant  p/MPa
1 3.0 3.0 C 2.3
2 5.0 5.0 G 2.7
3 7.0 7.0 H 3.0
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Table 2 Variance analysis of maximum drawing load
A B C D F el kg F'= F- 3500
Total
rd Ty Lubricant p 1 2 3 1 2 3

1 1 1 1 1 3634.2 3653.1 3657.9 134.2  153.1 157.9 445.2
2 1 2 2 2 3784.4 3721.2 3752.8 284.4 221.2 252.8 758. 4
3 1 3 3 3 3562.9 3586.7 3578.8 62.9 86.7 78.8 228. 4
4 2 1 2 3 3667.3 3673.7 3697.4 167.3 173.7 197.4 538.4
5 2 2 3 1 3515.5 3531.3 3519.5 15.5 31. 3 19.5 66.3
6 2 3 1 2 3681.6 3677.7 3665.8 181.6 177.7 165.8 525.1
7 3 1 3 2 3497.9 3529.6 3509.8 - 2.1 29.6 9.8 37.3
8 3 2 1 3 3620.6 3612.1 3616.3 120.6  112.1 116.3 349.0
9 3 3 2 1 3624.6 3627.4 3631.2 124.6  127.4 131.2 383.2
I 1432.0 1020.9 1319.3 894.7
II 1129.8 1173.7 1680.0 1320.8 T'=3331.3
i 769.5 1136.7 332.0 1115.8
S 24446.2 1412.1 108221.1 10091.5 CT= T?27= 411020.7
V 12223.1 706.0 54110.6  5045.8 S an= 148120.2; Sgwa= 3949.3
F 55.7 3.2 246. 6 23.0

Foos(2, 18)=3.55, Fon(2, 18)= 6.01
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Fig. 2 Calculated variation of maximum
drawing load F as a function of normal

anisotropy value R
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load F as a function of radius of die arc rq
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load F as a function of radius of punch arc r
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Fig. 7 Calculated variation of maximum drawing

load F' as a function of blank-holder pressure p
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Fig. 9 Calculated variation of maximum drawing

load F as a function of radius of blank R
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Table 3 Accuracy comparison between system prediction and theoretical value

Predicted value by system

Theoretical value Experimental data

r¢/mm r,/mm p/MPa u Ro/ mm
FJN Error/ % FJ/N Error/ % FJN
3.0 3.0 2.5 0.241 38.0  34346.1 0.35 31426.0 8.82 34466.0
3.0 5.0 2.8 0.249 39.0  36586.7 0.29 34777.7 5.22 36693.0
7.0 5.0 3.1 0.235  40.0  36292.6 0.29 35193.5 2.75 36187.0
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Artificial neural network based intelligent system for

prediction of drawing load

LUDongl, DING Ke', HE Damrnong', ZHANG Yong qing',
RUAN Xue-yu', PENG Dashu®, JIANG Yong®
(1. National Die and Mould Engineering Research Center,
Shanghai Jiaotong University, Shanghai 200030, P. R. China;
2. Department of Materials Science and Engineering,

Central South University of Technology, Changsha 410083, P. R. China)

[ Abstract] With the combination of the mathematical theory of plasticity, orthogonal test and the technology of artificial neural
network, an intelligent prediction system was established to calculate the drawing load of cup-drawing precisely. According to Hill’ s
anisotropic theory, a new theoretical formula was derived to compute the drawing load variations and the maximum drawing load.
T he technological parameters affecting the maximum drawing load were analyzed by applying orthogonal tests and the following con-
clusions are drawn: 1) At the notability level of one percent, the maximum drawing load is relevant to blank-holder pressure, the ra-
dius of the die arc, and the type of lubricant; 2) The most notable factor affecting the maximum drawing load is the type of lubricant,
the second is the radius of the die arc, then the blank-holder pressure and the radius of the punch arc. By applying the artificial neural
network, the theoretical formula and the experimental data were combined so that the model error of the theoretical formula was
mended, which enhances the accuracy of prediction. Two key problems encountered in the application of BP network were discussed
and the solutions were given. Then the intelligent prediction system was constructed, which is not only practically applicable in engi-

neering, but also valuable for the better understanding of the cup-drawing behavior of sheet metal.

[ Key words] drawing loads; mathematical theory of plasticity; orthogonal tests; artificial neural network
(RE =REP)



