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Fig. 1 SEM photos of MnCOs3 particle before
(a) and after (b) thermal decomposition
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Fig.2 Rate of MnCO3; decomposition in air

e WY YA U
Table 1 Rate constant of MnCO3; decomposition
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Fig. 4 Relation between rate of MnO oxidation and

reaction time at 380 C
1 —Calculated by equation of reaction and
diffusion mixed control;
2 —Calculated by equation of diffusion control only;

3 —Determined by experimental data
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Kinetics of thermal decomposition of MnCOs
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Abstract: The kinetics on the thermal decomposition of MnCO3 was investigated. The parameters in the kinetic equations were

worked out. The results showed that the decomposition reaction of MnCO3; follows the shrinking core model, and the control step is

chemical reaction; the oxidation of MnO obeys the grain pellet model, during the initial period, the oxidation reaction is simultaneous-

ly controlled by reaction and diffusion, and later by diffusion only. T he diffusion of oxygen in MnO, products layer is a restraining fac-

tor of MnO oxidation, the effective method of speeding up MnO oxidation rate is changing the structure of the MnO, products layer in

order to make it become porous, loosened and enlarged the diffusion coefficient of oxygen.
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