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Abstract: In order to overcome the problems of inferior cycling stability and slow ion diffusion of MnO, cathode in
aqueous zinc-ion battery, a high-accuracy customized 3D printed MnO; cathode was prepared via direct ink writing.
The rheological test showed that the printing ink indicated shear-thinning behavior with the storage modulus platform
value over 10°Pa. The SEM images displayed that the customized mesh—layer structure was well maintained after
100 cycles. The 3D structure with excellent mechanical strength could effectively alleviate the internal stress and
provide a greater specific surface area. The specific capacity of the 3D printing cathode was three times higher than that
of the 2D one at 50 mA/g after 110 stable cycles. The energy storage mechanism of the reversible Mn?*/Mn*" double
redox for 3D printing battery was also studied through a variety of ex-situ experiments.
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1 Introduction

Aqueous zinc-ion battery (ZIB) is one of the
most promising rechargeable batteries due to its
environmental friendliness and high energy
density [1-3]. Currently, the cathode materials of
ZIBs consist of Prussian blue analogs, vanadium-
based oxides, organic compounds and manganese-
based oxides [4-6]. Among them, manganese
oxides have been intensively researched owing to
their diverse crystal structures (a-MnO», f-MnOs,
y-MnO,, MnO, Mn3;04, etc.) and ultrahigh
theoretical specific capacity [7,8]. However, the
irreversible structural transformation and the
dissolution of Mn?* during charge/discharge process
cause capacity attenuation of the battery [9].

Until now, element doping and surface
coating have been the main methods to solve such
problems [10,11]. However, elemental doping
reduces the active ingredients and the gravimetrical

capacity, and some of the coating can hinder the ion
transport [12,13]. Besides, traditional coating
electrodes have constraints in controlling the
spatial structure and geometry of the electrodes,
and the limited electrolyte penetration leads to slow
ion transport, which affects the charge storage
performance [14,15]. In order to increase the areal
capacitance and energy density of the 2D electrode,
it is necessary to raise the active material load, that
is, to construct a thicker electrode, which inevitably
increases the ion transmission distance and total
resistance [16].

Therefore, compared with the traditional
coating electrode, the 3D printing electrode not
only provides a lower resistance and shorter
diffusion path during ion transmission process, but
also makes full use of the limited space and creates
a porous structure to increase the energy density
significantly [17,18]. Most 3D printed batteries are
based on inkjet printing (IJP). For instance, WANG
et al [19] combined inkjet printing with stamping
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metal film-printed metal patterns and constructed
Zn//MnQO; batteries with a great cycle capacity
of 253 mA-h/g at 500 mA/g for 50 cycles. Besides,
stereolithography (SLA) is also used in the
fabrication of electrochemical storage equipment.
ZHANG et al [20] developed a technique of
electroless deposition combined with 3D printing to
fabricate a Zn anode. And the battery delivered a
high capacity retention (80%) at 10 A/g after
1000 cycles. However, IJP and SLA have to
combine with other technologies, instead of
completing the task independently, which will
increase the additional cost in production. And
these methods are difficult to meet the requirements
of high precision.

Nevertheless, direct ink writing (DIW) can
solve the above problems at the same time due to its
simple operation and the ability to transform any
shape designed by digital technology into a
high-precision solid 3D model [21,22]. Hence, we
prepared a cathode material for zinc manganese
batteries by 3D DIW. Compared with traditional
coating electrodes, 3D printing electrodes have a
higher solid—liquid interface area, and the mesh-
layered structure will deal with the problems of

volume expansion/contraction and thermal diffusion.

At present, DIW is mainly studied in the solid-state
electrolytes manufacturing of lithium-ion batteries.
LIU et al [23] directly printed the LATP-based
hybrid solid-state electrolytes on LiFePO4 cathodes
for lithium-ion batteries with the discharge capacity
of 150 mA-h/g at 0.5C. However, it was barely
reported on the application of DIW in zinc ion
batteries. Therefore, this designable electrode
preparation method provides a novel idea for the
further application of ZIBs.

2 Experimental

2.1 Preparation of a-MnO

The manganese oxides were synthesized by a
coprecipitation method. Briefly, 1.5 g of KMnO4
was first dispersed into 73.5 mL of deionized (DI)
water to obtain Solution A. 0.34 g C4HesMnO4:4H,0
was dissolved in 9.6 mL of DI water to obtain
Solution B. Then, Solution A was added dropwise
to Solution B under magnetic stirring. The
suspension was stood for 2 h and then rinsed with
DI water and ethanol several times. After drying at
60 °C for 12 h, MnO; was obtained.

2.2 Preparation of traditional coating electrode

The active material, conductive agent and
binder (coprecipitated MnO», acetylene black and
PVDF, respectively) were mixed with a mass ratio
of 7:2:1. Next, a proper quantity of N-methyl-
pyrrolidone (NMP) was added to form a slurry.
Then, the slurry was coated on the stainless-steel
foil evenly and dried in the vacuum oven at 100 °C
for 12 h.

2.3 Preparation of 3D printing electrode

0.2 g acetylene black and 0.7 g coprecipitated
MnO; were added in the agate mortar. The Mixture
C was obtained by grounding the mixture for
25 min. PVDF (0.1 g) and an appropriate amount of
NMP were added to a mixing bottle. And then, the
bottle was kept in the oven at 60 °C for 15 min to
obtain transparent Solution D. Finally, Mixture C
and Solution D were fully mixed with the planetary
mixer.

Firstly, the stainless-steel foil was fixed on the
printing platform. The syringe with ink was then
assembled on the direct-write molding instrument,
and the print parameters were set as follows: the
extrusion pressure was 275.8 kPa, and the printing
speed was 2.5 mm/s. Finally, the product was put
into the vacuum oven at 100 °C for 12 h. In addition,
the complete process of the 3D printing electrode
preparation is shown in Fig. 1. And the optimizing
process of 3D printing parameters is shown in
Fig. S1 in Supporting Materials.

2.4 Material testing

X-ray diffraction (XRD) patterns were
recorded on the PANalytical Empyrean 2
diffractometer of Netherlands. X-ray photoelectron
spectroscopy (XPS) spectra were recorded by the
Thermo Scientific K-Alpha spectrometer of
America with a monochromatic Al K, X-ray source.
Scanning electron microscopy (SEM) images were
recorded by the JSM—7900F microscope of Japan.
Rheological properties and viscoelastic properties
were measured by the TA AR2000EX of Britain.

2.5 Electrochemical testing

Electrochemical performance tests were
executed using 2025-type coin cells with metallic
zinc foil as a counter electrode. In addition, the
electrolyte was composed of 0.3 mol/L MnSO4
and 1 mol/L ZnSOj4 solution. The discharge/charge
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Fig. 1 Schematic diagram of 3D printing process and photograph of printed product

experiments were recorded by the LANHE Testing
System (CT3001A, Wuhan, China), and the
potential window was 0.8-1.8 V. The cyclic
voltammograms (CV) were tested on the CHI600E
electrochemical workstation. The electrochemical
impedance spectra (EIS) were obtained on the MUL
TI AUTOLAB M204 impedance analyser.

3 Results and discussion

3.1 Material characterization

The phase composition and crystal structure
of coprecipitated MnO, were analyzed by XRD.
The diffraction peaks of manganese oxide powder
corresponded to the (110), (310), (211) and (521)
planes of a-MnO» (JCPDS No. 44-0141), as shown
in the XRD pattern (Fig. 2(a)).

The manganese valence state of a-MnO, was
analyzed by XPS. In Fig. 2(b), four peaks were
shown by the 2p orbital high-resolution spectrum
of Mn, which corresponded to Mn*" and Mn?*" at
642.4eV (653.2eV) and 640.9¢eV (652.3¢V),
respectively [24]. Therefore, the a-MnO, prepared
by the coprecipitation method contained a small
amount of Mn,Os; impurity, and the content of
Mn,O3 was approximately 18.3% (Table S1 in
Supporting Materials).

A nanorod structure with typical a-MnO;
morphology was observed in the TEM images of
o-MnQO; (Figs. 3(a, b)). Nanorods of 100—200 nm
had a wide particle size distribution, which could
better contact each other during the extrusion
process and increase the solid volume fraction of
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Fig. 2 XRD pattern (a) and XPS spectra (b) of a-MnO»

the inks (Fig. S2 in Supporting Materials). Clear
and regular lattice fringes were observed in the
HRTEM image (Fig.3(c)). And the spacing of
0.342 nm corresponded to the (211) crystal plane of
a-MnQO,. A small amount of K was observed
through energy-dispersive X-ray (EDX) elemental
mapping images (Fig. 3(d)), indicating K ions were
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Fig. 3 TEM image (a, b), HRTEM image (c), and EDX elemental mapping images (d) of a-MnO,

successfully doped into o-MnO, during the
synthesis process, which was beneficial to
maintaining the morphology of a-MnO, [25].

The SEM image (Fig.4(a)) shows that the
coprecipitated MnQO, aggregates with sizes of
0.5-1.0 um were composed of nanorods with
lengths of 100—200 nm. As shown in Fig. 4(b),
the MnO, of the traditional coating electrode
was uniformly distributed in the binder and the
conductive agent was in the form of small particles.
After 100 cycles, the surface of the electrode was
obviously cracked, and the exposed MnO, particles
grew slightly (Fig. 4(c)). The photographs of the
3D printing electrode before drying are shown in
Figs. S3 and S4 in Supporting Materials. As shown
in Figs.4(d, e), the dry 3D printing electrode
maintained a well mesh-layered structure. After
100 cycles, the surface of the electrode became
rougher as the exposed MnO, grew into a block
morphology (Fig. 4(i)). In addition, the 3D structure
was well maintained, which proved that the ink
had excellent mechanical strength after drying
(Figs. 4(g, h)).

The rheological test was used to determine
whether the ink met the requirement of 3D printing.

As shown in Fig. 5(a), with the increase of shear
rate, the ink appeared shear-thinning behaviour,
which proved that the ink was a typical non-
Newtonian fluid. The apparent viscosity of fresh ink
was 2818.1 Pa-s, when the shear rate was 0.1 s/,
and the apparent viscosity decreased to the order of
10 Pa's when the shear rate was 100s™!. This
phenomenon proved that the ink had good fluidity
at a certain shear rate [26,27]. Besides, the initial
apparent viscosity of the ink after 24 h was slightly
lower than that of the fresh ink, and with the
increase of shear rate, its apparent viscosity was
almost the same as that of the fresh ink.

Figure 5(b) shows that the fresh ink had a
stable long plateau period, which was dominated by
the storage modulus before the shear stress reached
1x10° Pa. The storage modulus in the plateau period
reached an order of 10°, which proved that the ink
had a strong ability to resist shear force and
maintain elastic deformation [28,29]. The initial
storage modulus of the ink after 24 h (Fig. 5(c)) was
slightly lower than that of the fresh ink, and the
other rheological behaviors were the same as those
of the fresh ink on the whole, which proved that the
ink had good dispersion stability.
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Fig. 4 SEM images: (a) Material characterizations of coprecipitated MnO»; (b) Traditional coating electrode before
cycling; (c) Traditional coating electrode after 100 cycles; (d—f) 3D printing electrode before cycling; (g—i) 3D printing

electrode after 100 cycles
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Fig. 5 Apparent viscosity as function of shear rate (a), and storage modulus (G") and loss modulus (G") (b, ¢) of ink

Figures 6(a, b) display the initial three cycles
of cyclic voltammetry (CV) corresponding to the
traditional coating battery and 3D printing battery.
The voltage range was 0.8—1.8 V (vs Zn/Zn?*") with
the scan rate as 0.1 mV/s. Several pairs of redox

peaks were observed in these curves, which was
due to the extraction/insertion of Zn?' ions in
MnO;. In general, the CV curves of two sets of
batteries had good repeatability except that the first
lap was slightly biased in generating the SEI film.
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Fig. 6 CV curves of traditional coating electrode (a) and 3D printing electrode (b) at 0.1 mV/s; Cyclic performance of
traditional coating electrode and 3D printing electrode at 50 mA/g (c, d); Rate performance of traditional coating
electrode and 3D printing electrode (e); EIS spectra of traditional coating electrode and 3D printing electrode (f)

The current response at 1.23 V was related to the
formation of ZnMn,Os or MnOOH during the
initial process of cathodic polarization. In addition,
the traditional coating battery had a weak current
response between 1.0 and 1.1 V owing to the
occurrence of side reactions, which was not found
in 3D printing batteries. In the initial anodic sweep,
a current response of the traditional coating battery
was observed at 1.57 V, while the current of the
3D printing battery continued to respond within

1.5—1.7 V. This result indicated that the extraction
process of H" and Zn?* was carried out continuously
over a wide voltage range [30]. The reactions could
be formulated as follows:
MnOOH==H"+MnO:+e

ZnMn,O~=2MnQO,+Zn*"+2¢

&)
(2)
The electrochemical cycle of the traditional

coating battery at 50 mA/g is shown in Fig. S5 in
Supporting Materials. On the first discharge curve,
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two platforms located at 1.3—1.35V and 0.86—
0.95 V were observed, which were interrelated with
the formation of spinel ZnMn,Os or monoclinic
MnOOH in the initial process of cathodic
polarization. However, the 3D printing battery only
had a plateau at 1.2—1.3 V and was smoother than
the traditional battery, which further proved that the
H" and Zn?" extraction/ insertion process in the 3D
printing battery was more continuous and stable
(Fig. 6(c)).

The cycling performances of the traditional
coating battery and 3D printing battery at 50 mA/g
were compared in Fig. 6(d). A sharp capacity
decay was observed on the curve of the traditional
battery, and the capacity decreased to 40 mA-h/g
after 20 cycles, while the capacity of the 3D
printing battery stabilized at 150 mA-h/g. This
demonstrated that the 3D printing structure was
conducive to the maintenance and stability of the
capacity.

Moreover, the rate capabilities were contrasted
at several current densities (Fig. 6(e)). As the
current density raised from 50 to 500 mA/g, the
capacities of the traditional coating battery were
280.6, 150.5, 77.9, 51.6, and 35.6 mA-h/g.
Meanwhile, the capacities of the 3D printing battery
were 2159, 151.6, 91.4, 60.0, and 40.7 mA-h/g,
which were slightly higher than those of the
traditional battery and showed better recovery
performance when returned to a low current
density.

Nyquist plots of the traditional coating battery
and 3D printing battery were compared in Fig. 6(f).
The charge transfer resistance of the 3D printing
battery was much smaller than that of the other

batteries, proving that the 3D printing structure
gave a higher contact area between the electrolyte
and active material, which was beneficial to charge
transfer and ion diffusion.

3.2 Reaction mechanism

To improve the printing effect, the pressure
filtration effect was used to assist the extrusion
process. Since NMP is a Newtonian fluid, under the
action of solvent pressure po in evenly distributed
pores, the ink has a pressure filter effect, and the
filtered solvent penetrates from the ink, which
satisfies Darcy’s law:

v=q/A (3)
4

g="" N (4)
8n

where v is the flow rate; g is the pressure filtration
capacity; A4 is a cylindrical surface passing through
during the pressure filtration process; r; is the
radius of the void hole, which gradually decreases
in the process of pressure filtration; J is the pressure
gradient in the void hole; 7 is the viscosity
coefficient of NMP; ¢ is the time of pressure
filtration; N is the void number on the calculated
section.

Therefore, the pressure filtration effect was
used to provide a self-lubricating effect in the
needle by adjusting the needle diameter and
extrusion pressure through the formula. In addition,
part of the solvent was separated from the ink when
the pressure filtration effect occurs, and the
shrinkage of the 3D printing electrode after drying
would be abated by reducing the solid volume
fraction (Fig. 7(a)).
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Fig. 7 Schematic diagram of pressure filtration effect (a) and comparison model of surface ion diffusion per unit

volume (b)
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Next, through the ex-situ XRD, ex-situ XPS,
and ex-situ SEM, the morphology and crystal
structure evolution were further explored. From the
5th cycle, such XRD patterns of the cathode under
several charge/discharge states are compared in
Fig. 8(a). It was observed that the peaks of
Zn4SO4(OH)s-5H20 (ZSH) were strong at 0.80 V.
With the deepening of the charging, the peaks of
ZSH weakened, and the characteristic peaks of
MnO, began to appear. When fully charged to
1.80 V, an obvious characteristic peak of MnO;
(310) was observed at 26=28.7°. After completely
discharged to 0.80 V again, the characteristic peaks
of ZSH were obvious, which proved that the battery
had good reversibility [31]. However, the signals of
ZnMn,0O4 and MnOOH were weak throughout, and
the characteristic peaks were multiple at 26=
35°-40°, so it was difficult to distinguish their
signals. The weak signals of ZnMn>O4 and MnOOH
were due to Mn>" being unstable and prone to
disproportionation reactions, so it was further
transformed into Mn** and dissolved in electrolyte
containing MnSQOj4 [32,33].

Zhen LIU, et al/Trans. Nonferrous Met. Soc. China 33(2023) 1193—-1204

For the ex-situ XPS spectra, in the high
resolution of O 1s (Fig. 8(b)), the peak intensity of
the Mn—O bond increased with the charged state
and reached the strongest intensity when it was
fully charged to 0.80 V. Figure 8(c) shows the
high resolution of Mn 3s and Zn 3p. As the charge
degree increased, the position of the Mn 3s double
peaks gradually approached, which proved that the
average oxidation state of Mn rose [34]. When
fully charged to 0.80 V, the double-peak dE=4.7 eV,
which demonstrated that Mn*" was dominant at this
time. When completely discharged to 1.80V, the
double-peak dE=5.5 eV, which proved that Mn*'
accounted for the largest proportion [31]. This was
mutually confirmed that the Mn** converted into
Mn?*" after disproportionation, as inferred by XRD.

In the ex-situ SEM images (Fig.9), some
phenomena consistent with those inferred by
XRD and XPS were observed. When the traditional
coating cathode was discharged to 1.27 V, some
corrugated nanoarrays began to appear (Fig. 9(a)).
The electrode surface was covered by a larger
flaky substance after being discharged to 0.80 V
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Fig. 8 Ex-situ XRD patterns at 100 mA/g (a), and ex-situ XPS spectra of O Is (b) and Zn 3p/Mn 3s (c) of cathode
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Fig. 9 Ex-situ SEM images of traditional coating cathode (a—d) and 3D printing cathode (e—h) at different states;
EDX elemental mapping images of 3D printing cathode at different states (i, j) (C—Charge; D—Discharge)

(Fig. 9(b)). When charged to 1.40V, the two
structures of nanosheets existed at the same time
(Fig. 9(c)). Finally, the larger flakes disappeared at
1.80 V (Fig. 9(d)). When the 3D printing cathode
was discharged to 1.27 V, the corrugated structure
was relatively smaller (Fig. 9(e)). After being
discharged to 0.80 V, the surface of the electrode
was covered by a larger flaky substance, but part of
the corrugated nanoarray could still be observed
(Fig. 9(f)). After being fully charged (1.80 V), the
corrugated structure deepens, and a higher specific
surface area was provided (Fig. 9(h)).

The EDX elemental mapping images
(Figs. 9(i,j)) show that Mn and O were evenly
distributed on the surface of the 3D printing
cathode when charged to 1.80 V, and the content of
Zn was extremely low. After complete discharge,
the content of Zn increased sharply and was evenly
distributed in the flake-like parts, while Mn was
mainly distributed in the gaps of the flakes. The

flaky substance prevented part of the active material
from participating in the reaction after being
covered. Combined with Fig. 8(a), the larger flaky
substance was ZSH, while the corrugated structure
was composed of MnO,, ZnMn,O4 and MnOOH in
different proportions. The ratio of MnO, and the
corrugated structure increased with the degree of
charging. And one of the reasons for the good cycle
stability of the 3D printing cathode was the
thorough electrochemical reaction on the cathode.

Therefore, combined with the above analysis,
it was speculated that there were three processes
in the battery: the conversion of MnO,, MnOOH
and ZnMn;Os; to ZnisSO4(OH)e5H,O, the
disproportionation of Mn**, and the dissolution/
deposition of Mn** [35-37]. And the energy storage
mechanism of the battery was described as follows:
Cathode side:

2MnOx+Zn*"+2e = ZnMn,04 (5)
MnO,+H"+e == MnOOH (6)
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3ZnMny04+4S0; +32H,0+13Zn*"+6e =

6Mn2*+4Zn4SO4(OH)6-5H20 (7)
2MnOOH+S0; +7H,0+4Zn*"+2¢ —

2Mn?**+Zn4SO4(OH)s-5SH,O (®)
27Zn4(OH)6SO4: SHO+3Mn*" =

5Zn**+2S0; +3MnO,+3Zn+16H,0 )
Anode side:
Zn=—=7n>"+2e (10)

As MnSO; was added to the electrolyte to
provide plenty of Mn?" in the system, the balance
of Mn?** moved to the deposition direction. As
the number of cycles increased, MnQO, particles
gradually coarsened, which was confirmed in
Figs. 4(g—1).

Besides, the solid liquid interface is the place
of electrochemical reaction, which is equivalent to a
good filtering device to transfer energy in a smooth
way and has a significant influence on the reaction
rate. Since the specific surface of the unit volume
of the 3D printed electrode is four times that of
the traditional electrode (Fig. 7(b)), the 3D printed
electrode has a smoother oxidation—reduction
reaction zone and a stable capacity retention
capacity. Meanwhile, the mesh—layer structure
adopted in this design provided a large amount of
effective free space for volume contraction and
expansion during the charge and discharge process
and accelerated the diffusion of reaction heat, which
significantly reduced the residual stress inside the
electrode material.

4 Conclusions

(I) A high-accuracy customized 3D printed
MnO:; cathode was prepared via direct ink writing.
The specific capacity of the 3D printing cathode
was three times higher than that of the 2D cathode
at 50 mA/g after 110 stable cycles.

(2) The cracking, peeling, and loss of active
material caused by the residual stress in the material
were reduced by the mesh-layer structure through
3D printing DIW. Therefore, DIW solves the
problems of poor conductivity due to the shedding
of current collectors, and optimizes the battery
cycle performance.

(3) The pressure filtration effect was used to
assist the extrusion process to improve the printing
effect.
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